Toppfrågor
Tidslinje
Chatt
Perspektiv
Täthetsfunktion
Från Wikipedia, den fria encyklopedin
Remove ads
Inom sannolikhetsteori ger täthetsfunktionen en bild av hur sannolika olika resultat är i förhållande till varandra till skillnad från fördelningsfunktionen som ger sannolikheten att variabeln antar värden som "ligger till vänster" om en given punkt på talaxeln, dvs. inom intervallet .
Ett annat vanligt namn på täthetsfunktionen är frekvensfunktion,[1] men skall man vara precis gör man distinktionen frekvensfunktion eller sannolikhetsfunktion för diskreta stokastiska variabler och täthetsfunktion för kontinuerliga.[2][3][4][5]
Remove ads
Kontinuerlig endimensionell täthetsfunktion
Givet en kontinuerlig slumpvariabel (stokastisk variabel) beskriver täthetsfunktionen sannolikheten att variabeln ska anta värden mellan och med hjälp av formeln
Om är den kumulativa fördelningsfunktionen för så erhålles den ur
och om är kontinuerlig i så är
- .
Remove ads
Diskret endimensionell frekvensfunktion
Givet en diskret stokastisk variabel ges frekvensfunktionen av
Remove ads
Formell definition
För den stokastiska variabeln kan man associera en täthetsfunktion som uppfyller villkoren:
- Icke-negativitet för alla ,
- Dess integral över alla x är lika med 1.
En täthetsfunktion som inte uppfyller det sista villkoret kallas onormerad.
Se även
Referenser
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads