Remove ads
aritmetisk funktion Från Wikipedia, den fria encyklopedin
Eulers φ-funktion φ(n), namngiven efter Leonhard Euler, är en viktig aritmetisk funktion inom talteorin.
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2020-06) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Om n är ett positivt heltal, då definieras φ(n) som antalet positiva heltal mindre än eller lika med n som är relativt prima med n. Till exempel är φ(8) = 4 eftersom de fyra talen 1, 3, 5 och 7 är relativt prima till 8.
Värdet av φ(n) kan därför beräknas genom att använda aritmetikens fundamentalsats dvs om där pj är distinkta primtal, då är
Om man summerar φ:s värden för alla positiva heltal som delar ett tal n får man talet n:
φ är en multiplikativ funktion då m och n är relativt prima dvs φ(mn) = φ(m) φ(n).
Värdet av φ(n) är lika med ordningen av enhetsgruppen till ringen Z/nZ (se modulär aritmetik). Detta tillsammans med Lagranges sats ger ett bevis för Eulers sats.
1983 bevisade J. L. Nicolas att
gäller för oändligt många n där γ är Eulers konstant.
och
där ζ är Riemanns zetafunktion och är ordosymbolen. Av relationen följer approximationen
(där γ är Eulers konstant).
där m > 1 är ett positivt heltal och ω(m) är antalet olika primtalsfaktorer av m.
Några identiteter av Schneider som innehåller Eulers fi-funktion, Möbiusfunktionen och det gyllene snittet är
och
Genom att subtrahera dem fås
Ett direkt korollarium är
Bevisen baserar sig på formlerna
Eulers fi-funktion har de genererande funktionerna
och
som konvergerar för |q| < 1.
1950 bevisade Somayajulu att
1954 bevisade Schinzel och Sierpiński det starkare resultatet att mängden
är tät i mängden av positiva reella tal. De bevisade också att mängden
är tät i intervallet (0, 1).
Om p är ett primtal är φ(p) = p − 1. 1932 frågade D. H. Lehmer om det finns några sammansatta tal n så att φ(n) | n − 1. Än så länge är inga såna är kända.
1933 bevisade han att om ett sådant n existerar måste det vara udda kvadratfritt och delbart med åtminstone sju primtal (det vill säga ω(n) ≥ 7). Cohen och Hagis bevisade 1980 att n > 1020 och att ω(n) ≥ 14. Dessutom bevisade Hagis att om 3 delar n är n > 101937042 och ω(n) ≥ 298848.
Carmichaels förmodan säger att för alla positiva heltal n finns det åtminstone ett annat positivt heltal m ≠ n så att φ(m) = φ(n).
Det är känt att om det finns ett enda tal som inte satisfierar förmodan, då finns det oändligt många, och att det minsta eventuella talet som inte satisfierar förmodan är minst .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.