Списак интеграла логаритамских функција: x>0 вреди за све интеграле у овом чланку. ∫ ln c x d x = x ln c x − x {\displaystyle \int \ln cx\,dx=x\ln cx-x} ∫ ( ln x ) 2 d x = x ( ln x ) 2 − 2 x ln x + 2 x {\displaystyle \int (\ln x)^{2}\;dx=x(\ln x)^{2}-2x\ln x+2x} ∫ ( ln c x ) n d x = x ( ln c x ) n − n ∫ ( ln c x ) n − 1 d x (for n ≠ 1 ) {\displaystyle \int (\ln cx)^{n}\;dx=x(\ln cx)^{n}-n\int (\ln cx)^{n-1}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ d x ln x = ln | ln x | + ln x + ∑ i = 2 ∞ ( ln x ) i i ⋅ i ! {\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{i=2}^{\infty }{\frac {(\ln x)^{i}}{i\cdot i!}}} ∫ d x ( ln x ) n = − x ( n − 1 ) ( ln x ) n − 1 + 1 n − 1 ∫ d x ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ x m ln x d x = x m + 1 ( ln x m + 1 − 1 ( m + 1 ) 2 ) (for m ≠ 1 ) {\displaystyle \int x^{m}\ln x\;dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ x m ( ln x ) n d x = x m + 1 ( ln x ) n m + 1 − n m + 1 ∫ x m ( ln x ) n − 1 d x (for m , n ≠ 1 ) {\displaystyle \int x^{m}(\ln x)^{n}\;dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m,n\neq 1{\mbox{)}}} ∫ ( ln x ) n d x x = ( ln x ) n + 1 n + 1 (for n ≠ 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ ln x d x x m = − ln x ( m − 1 ) x m − 1 − 1 ( m − 1 ) 2 x m − 1 (for m ≠ 1 ) {\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}} ∫ ( ln x ) n d x x m = − ( ln x ) n ( m − 1 ) x m − 1 + n m − 1 ∫ ( ln x ) n − 1 d x x m (for m , n ≠ 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m,n\neq 1{\mbox{)}}} ∫ x m d x ( ln x ) n = − x m + 1 ( n − 1 ) ( ln x ) n − 1 + m + 1 n − 1 ∫ x m d x ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {x^{m}\;dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ d x x ln x = ln | ln x | {\displaystyle \int {\frac {dx}{x\ln x}}=\ln |\ln x|} ∫ d x x n ln x = ln | ln x | + ∑ i = 1 ∞ ( − 1 ) i ( n − 1 ) i ( ln x ) i i ⋅ i ! {\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln |\ln x|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(n-1)^{i}(\ln x)^{i}}{i\cdot i!}}} ∫ d x x ( ln x ) n = − 1 ( n − 1 ) ( ln x ) n − 1 (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}} ∫ sin ( ln x ) d x = x 2 ( sin ( ln x ) − cos ( ln x ) ) {\displaystyle \int \sin(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))} ∫ cos ( ln x ) d x = x 2 ( sin ( ln x ) + cos ( ln x ) ) {\displaystyle \int \cos(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))} Литература -{ Milton Abramowitz and Irene Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. I.S. Gradshteyn (И. С. Градштейн), I.M. Ryzhik (И. М. Рыжик); Alan Jeffrey, Daniel Zwillinger, ур. (2007). Table of Integrals, Series, and Products. seventh edition. Academic Press. ISBN 978-0-12-373637-6.CS1 одржавање: Вишеструка имена: списак уредника (веза). Errata. (Several previous editions as well.) A.P. Prudnikov (А. П. Прудников), Yu.A. Brychkov (Ю. А. Брычков), O.I. Marichev (О. И. Маричев). Integrals and Series. First edition (Russian), volume 1–5, Nauka, 1981−1986. First edition (English, translated from the Russian by N.M. Queen), volume 1–5, Gordon & Breach Science Publishers/CRC Press, 1988–. 1992. ISBN 978-2-88124-097-3. Недостаје или је празан параметар |title= (помоћ). Second revised edition (Russian), volume 1–3, Fiziko-Matematicheskaya Literatura, 2003. Yu.A. Brychkov (Ю. А. Брычков). Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Russian edition, Fiziko-Matematicheskaya Literatura, 2006. English edition. . Chapman & Hall/CRC Press. 2008. ISBN 978-1-58488-956-4. Недостаје или је празан параметар |title= (помоћ). Zwillinger, Daniel (2002). CRC Standard Mathematical Tables and Formulae. 31st edition. Chapman & Hall/CRC Press. ISBN 978-1-58488-291-6.. (Many earlier editions as well.) Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln] Benjamin O. Pierce A short table of integrals - revised edition (Ginn & co., Boston, 1899) }- Wikiwand - on Seamless Wikipedia browsing. On steroids.