Mnogokótnik (tudi vèčkótnik in s tujko poligón) je ravninski geometrijski lik, ki ga oklepa enostavna sklenjena lomljenka. Daljice, ki sestavljajo mnogokotnik, imenujemo stranice mnogokotnika, točke, v katerih se stranici stikata, pa oglišča. Daljice, ki vežejo nesosednja oglišča, so diagonale. V preprostih mnogokotnikih se stranice ne sekajo, stranice pa omejujejo območje z določeno ploščino.

Imena in vrste mnogokotnikov

Mnogokotnike imenujemo po številu njihovih stranic. Na primer: štirikotnik (tetragon), petkotnik (pentagon), šestkotnik (heksagon). Za večje število stranic se uporablja oblika n-kotnik, na primer 17-kotnik ali tudi sedemnajstkotnik.

V nadaljevanju je opisano imenovanje mnogokotnikov in izdelava imen mnogokotnikov, ki jih ni v preglednici:

Več informacij ...
Imena mnogokotnikov
ime robovi opombe
enokotnik (ali monogon)1V evklidski ravnini degenerira v zaprto krivuljo, ki ima samo eno oglišče.
dvokotnik (ali digon)2V evklidski ravnini degenerira v zaprto krivuljo z dvema ogliščema.
trikotnik (ali trigon)3Najenostavnejši mnogokotnik, ki lahko obstaja v evklidski ravnini.
štirikotnik (ali tetragon)4Najenostavnejši mnogokotnik, ki se lahko seka.
petkotnik (ali pentagon)5Najenostavnejši mnogokotnik, ki lahkoobstija kot pravilna zvezda. Zvezdasti petkotnik je znan kot pentagram.
šestkotnik (ali heksagon)6Izogibajmo se izraza »seksagon« - latinsko [sex-] + grško
sedemkotnik (ali heptagon)7Izogibajmo se izraza »septagon« - latinsko [sept-] + grško
osemkotnik (ali oktagon)8
devetkotnik (ali nonagon)9»nonagon« se uporablja kot mešanica latinščine [novem - 9] in grščine. Sodobni avtorji raje uporabljajo »eneagon«.
desetkotnik (ali dekagon)10
enajstkotnik (ali hendekagon)11Izogibajmo se izraza »undekagon« - latinščina [un-] + grščina
dvanajstkotnik (ali dodekagon)12Izogibajmo se izraza »duodekagon« - latinščina [duo-] + grščina
trinajstkotnik (ali triskaidekagon)13
štirinajstkotnik (ali tetrakaidekagon)14
petnajstkotnik (ali quindekagon ali pentakaidekagon)15
šestnajstkotnik (ali heksakaidekagon)16
sedemnajstkotnik (ali heptakaidekagon)17
osemnajstkotnik (ali oktakaidekagon)18
devetnajstkotnik (ali enneakaidekagon ali nonadekagon)19
dvajsetkotnik20
tridesetkotnik30
hektogon100»hektogon« je grško ime (glej hektometer), »centagon« je latinsko-grški križanec, ki se ne rabi pogosto.
tisočkotnik1.000Velikost kota v pravilnem tisočkotniku je 179,64°.
desettisočkotnik10.000Notranji kot pravilnega desettisočkotnika je 179,964°.
milijonkotnik[1]1.000.000Notranji kot pravilnega milijonkotnika je 179,99964°.[2]
apeirogonDegenerirani mnogokotnik z neskončno velikim številom stranic.
Zapri

Sestavljanje ostalih imen

Za sestavljanje imen mnogokotnikov, ki imajo več kot 20 in manj kot 100 robov, kombiniramo predpone na naslednji način:

Več informacij desetice, in ...
desetice in enice končna predpona
-kai- 1 -hena- -kotnik
20ikozi-2-di-
30triakonta-3-tri-
40tetrakonta-4-tetra-
50pentakonta-5-penta-
60heksakonta-6-heksa-
70heptakonta-7-hepta-
80oktakonta-8-octa-
90eneakonta-9-enea-
Zapri

Predpona »kai« se ne uporablja vedno. Mnenja so različna o tem, kdaj jo lahko uporabljamo, in kdaj ne (glej primere zgoraj).

Drugi sistem se uporablja pri imenovanju višjih alkenov (to so polno nasičeni ogljikovodiki), kjer uporabljamo:

Več informacij enice, desetice ...
enice desetice final suffix
1 hen-10deka- -gon
2do-20-koza-
3tri- 30triakonta-
4tetra- 40tetrakonta-
5penta- 50pentaconta-
6heksa- 60heksakonta-
7hepta- 70heptakonta-
8okta- 80oktakonta-
9ennea- (ali nona-) 90eneakonta- (ali nonakonta-)
Zapri

Taksonomska razvrstitev

Taksonomska razdelitev mnogokotnikov je podana z naslednjim drevesom:

Thumb
  • Mnogokotnik je preprost, če ga omejujejo stranice, ki se ne sekajo med seboj, drugače je kompleksen.
  • Preprosti mnogokotnik je konveksen, če njegovi notranji koti niso večji od 180°; drugače je konkaven.
  • Konveksni mnogokotnik je cikličen, če vsa njegova oglišča ležijo na eni krožnici. V tem primeru so stranice tetive krožnice, zato tak mnogogokotnik imenujemo tudi tetivni mnogokotnik.
  • Tetivni mnogokotnik je pravilen, če so vse njegove stranice enakih dolžin. Vsi pravilni mnogokotniki z istim številom stranic so podobni.
Pravilni mnogokotniki

Diagonale

Za računanje števila diagonal se uporablja preprosta enačba:

Zgleda:

Koti

Vsota notranjih kotov izbočenega (konveksnega) n-kotnika se lahko izračuna po formuli:

.

Zgled: Vsota notranjih kotov konveksnega šestkotnika je 720˚:

Formula za vsoto notranjih kotov velja tudi za nekatere konkavne mnogokotnike - če je le rob takega mnogokotnika ena sama enostavno sklenjena krivulja.

Vsota zunanjih kotov izbočenega (konveksnega) mnogokotnika je vedno enaka 360˚:

Galerija

Glej tudi

Sklici

Viri

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.