krožnica, ki poteka skozi vsa oglišča mnogokotnika From Wikipedia, the free encyclopedia
Očrtana krožnica je v ravninski geometriji krožnica, ki poteka skozi vsa oglišča danega mnogokotnika. Množica točk, ki jo ta krožnica omejuje, se imenuje očrtani krog.
Krožnico lahko očrtamo samo nekaterim mnogokotnikom. Če očrtana krožnica obstaja, so stranice mnogokotnika tetive krožnice, zato takemu mnogokotniku rečemo tetivni mnogokotnik. Oglišča mnogokotnika so v tem primeru sokrožne točke.
Simetrala tetive vedno poteka skozi središče krožnice. To nam omogoča konstrukcijo očrtane krožnice, pa tudi kriterij, kdaj očrtana krožnice sploh obstaja. Imejmo podan mnogokotnik:
Polmer očrtane krožnice je v novejših matematičnih učbenikih vedno označen z R, polmer včrtane krožnice pa z r (v starejših učbenikih je bil polmer očrtane krožnice r, polmer včrtane krožnice pa ρ).
Nekateri mnogokotniki, ki jim lahko zagotovo očrtamo krožnico:
Trikotnik ima značilnost, da se simetrale stranic vedno sekajo v isti točki, zato lahko trikotniku vedno očrtamo krožnico. Za polmer očrtane krožnice veljata dve pomembni formuli:
Krožnico lahko očrtamo samo nekaterim štirikotnikom - imenujemo jih tetivni štirikotniki.
Karakteristična za tetivne štirikotnike je značilnost, da sta nasprotna kota suplementarna.
Za polmer štirikotniku očrtane krožnice (R) velja naslednja zveza s ploščino (p):
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.