MATLAB (matrix laboratory) is a programming language made by Cleve Moler from MathWorks. It was originally made for numerical analysis (especially numerical linear algebra).[1][2][3] But today, it is used in many areas such as:
Quick Facts Developer(s), Initial release ...
Close
Quick Facts Paradigm, Designed by ...
MATLAB (programming language)Paradigm | multi-paradigm: functional, imperative, procedural, object-oriented, array |
---|
Designed by | Cleve Moler |
---|
Developer | MathWorks |
---|
First appeared | late 1970s |
---|
Stable release | 9.8 (R2020a) / March 19, 2020; 4 years ago (2020-03-19) |
---|
Typing discipline | dynamic, weak |
---|
Filename extensions | .m, .p,[26] .mex*,[27] .mat,[28] .fig,[29] .mlx,[30] .mlapp,[31] .mltbx,[32] .mlappinstall,[33] .mlpkginstall[34] |
---|
Website | mathworks.com |
---|
|
- APL
- EISPACK
- LINPACK
- PL/0
- Speakeasy[35]
|
|
|
|
Close
For a complete list of changes of both MATLAB and official toolboxes, check the MATLAB release notes.[43]
More information Name of release, Simulink, Stateflow (MATLAB attachments) ...
Versions of the MATLAB product family
Name of release |
MATLAB |
Simulink, Stateflow (MATLAB attachments) |
Year |
Volume 8 |
5.0 |
|
1996 |
Volume 9 |
5.1 |
|
1997 |
R9.1 |
5.1.1 |
|
1997 |
R10 |
5.2 |
|
1998 |
R10.1 |
5.2.1 |
|
1998 |
R11 |
5.3 |
|
1999 |
R11.1 |
5.3.1 |
|
1999 |
R12 |
6.0 |
|
2000 |
R12.1 |
6.1 |
|
2001 |
R13 |
6.5 |
|
2002 |
R13SP1 |
6.5.1 |
|
2003 |
R13SP2 |
6.5.2 |
|
R14 |
7 |
6.0 |
2004 |
R14SP1 |
7.0.1 |
6.1 |
R14SP2 |
7.0.4 |
6.2 |
2005 |
R14SP3 |
7.1 |
6.3 |
R2006a |
7.2 |
6.4 |
2006 |
R2006b |
7.3 |
6.5 |
R2007a |
7.4 |
6.6 |
2007 |
R2007b |
7.5 |
7.0 |
R2008a |
7.6 |
7.1 |
2008 |
R2008b |
7.7 |
7.2 |
R2009a |
7.8 |
7.3 |
2009 |
R2009b |
7.9 |
7.4 |
R2010a |
7.10 |
7.5 |
2010 |
R2010b |
7.11 |
7.6 |
R2011a |
7.12 |
7.7 |
2011 |
R2011b |
7.13 |
7.8 |
R2012a |
7.14 |
7.9 |
2012 |
R2012b |
8.0 |
8.0 |
R2013a |
8.1 |
8.1 |
2013 |
R2013b |
8.2 |
8.2 |
R2014a |
8.3 |
8.3 |
2014 |
R2014b |
8.4 |
8.4 |
R2015a |
8.5 |
8.5 |
2015 |
R2015b |
8.6 |
8.6 |
R2016a |
9.0 |
8.7 |
2016 |
R2016b |
9.1 |
8.8 |
R2017a |
9.2 |
8.9 |
2017 |
R2017b |
9.3 |
9.0 |
R2018a |
9.4 |
9.1 |
2018 |
R2018b |
9.5 |
9.2 |
R2019a |
9.6 |
9.3 |
2019 |
R2019b |
9.7 |
9.4 |
R2020a |
9.8 |
9.5 |
2020 |
R2020b |
|
|
Close
Gilat, Amos (2004). MATLAB: An Introduction with Applications 2nd Edition. John Wiley & Sons.
Quarteroni, Alfio; Saleri, Fausto (2006). Scientific Computing with MATLAB and Octave. Springer.
Gander, W., & Hrebicek, J. (Eds.). (2011). Solving problems in scientific computing using Maple and Matlab®. Springer Science & Business Media.
Martinez, W. L., Martinez, A. R., Solka, J., & Martinez, A. (2010). Exploratory data analysis with MATLAB. CRC Press.
Kim, P. (2017). Matlab deep learning. With Machine Learning, Neural Networks and Artificial Intelligence, 130.
Paluszek, M., & Thomas, S. (2016). MATLAB machine learning.
Perez, C. (2017). Deep Learning and Dynamic Neural Networks with Matlab. CreateSpace Independent Publishing Platform.
Wouwer, A. V., Saucez, P., & Vilas, C. (2014). Simulation of Ode/Pde Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications. Springer.
Houcque, D. (2008). Applications of MATLAB: Ordinary differential equations (ODE). Robert R. McCormick School of Engineering and Applied Science-Northwestern University, Evanston.
Shampine, L. F., & Reichelt, M. W. (1997). The matlab ode suite. SIAM Journal on Scientific Computing, 18(1), 1-22.
Ashino, R., Nagase, M., & Vaillancourt, R. (2000). Behind and beyond the MATLAB ODE suite. Computers & Mathematics with Applications, 40(4-5), 491-512.
Li, J., & Chen, Y. T. (2019). Computational partial differential equations using MATLAB®. CRC Press.
Lloyd N. Trefethen (2000) Spectral Methods in MATLAB. SIAM, Philadelphia, PA.
Ferreira, A.J.M. (2009). MATLAB Codes for Finite Element Analysis. Springer.
Kwon, Y. W., & Bang, H. (2018). The finite element method using MATLAB. CRC Press.
Pepper, D. W., & Heinrich, J. C. (2017). The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL. CRC Press.
Venkataraman, P. (2009). Applied optimization with MATLAB programming. John Wiley & Sons.
Weeks, M. (2010). Digital signal processing using MATLAB & wavelets. Jones & Bartlett Publishers.
Jackson, L. B. (2013). Digital Filters and Signal Processing: With MATLAB® Exercises. Springer Science & Business Media.
Stearns, S. D., & Hush, D. R. (2002). Digital signal processing with examples in MATLAB®. CRC Press.
Swanson, D. C. (2011). Signal processing for intelligent sensor systems with MATLAB. CRC Press.
Cho, M., & Martinez, W. L. (2014). Statistics in Matlab: A primer (Vol. 22). CRC Press.
Martinez, W. L. (2011). Computational statistics in MATLAB®. Wiley Interdisciplinary Reviews: Computational Statistics, 3(1), 69-74.
Moler, C., & Little, J. (2020). A history of MATLAB. Proceedings of the ACM on Programming Languages, 4(HOPL), 1-67.
Bezanson, Jeff; Karpinski, Stefan; Shah, Viral; Edelman, Alan (February 14, 2012). "Why We Created Julia". Julia Language. Retrieved December 1, 2016.
S.M. Rump: INTLAB – INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht, 1999.
Rump, S. M. (2010). Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 19, 287–449.
Hargreaves, G. I. (2002). Interval analysis in MATLAB. Numerical Algorithms, (2009.1).