Remove ads
polynomial equation with integer solutions From Wikipedia, the free encyclopedia
A Diophantine equation is an equation that only takes integer coefficients, and that can be written as , where f is a polynomial. Diophantine analysis is a branch of mathematical analysis, concerned with such equations. Typical questions include:
Very often such problems were unresolved for centuries. With time, mathematicians came to understand their depth (in some cases), rather than treat them as puzzles. The equation is named after Diophantus of Alexandria, a mathematician, who described them first. The restriction on integer coefficients makes sense, when one is concerned about finding Divisors, or in the case of modular arithmetic. In everyday life, many equations solve problems where only whole numbers make sense: A product is composed of many parts, but only whole pieces can be produced.
Some diophantine equations are very famous. These include the Pythagorean triple, Fermat's Last Theorem and Pell's equation. Hilbert's tenth problem was to find an algorithm to decide, whether a given Diophantine equation has an integer solution.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.