U vektorskoj analizi i teoriji polja , rotor ili rotacija (rot, eng. curl ) je veličina koja odražava svojstva vektorskoga polja u prostoru. Najviše se primjenjuje u fizici , pogotovo u elektromagnetizmu i hidrodinamici .
Nije nužno da ploha omeđena krvuljom koju promatramo leži u ravnini , traži se jedino da ta ploha nema singularnosti .
Nadalje,
pretpostavlja se da se vektor normale
n
^
{\displaystyle {\hat {n}}}
ne mijenja dok se element plohe smanjuje k nuli.
Rotor je, kao i Divergencija , također invarijanta vektorskog
polja.
Shematski prikaz uz definiciju rotacije vektorskoga polja
Kako bismo izveli izraz za rotor u kartezijevu sustavu , napravimo integraciju po rubu
pravokutnika paralelnog s
x
O
y
{\displaystyle xOy}
- ravinom (
n
^
=
z
^
{\displaystyle {\hat {n}}={\hat {z}}}
), kao na sl.
∮
W
→
d
S
→
=
∫
C
1
W
→
d
S
→
+
∫
C
2
W
→
d
S
→
+
∫
C
3
W
→
d
S
→
+
∫
C
4
W
→
d
S
→
=
{\displaystyle \oint {\overrightarrow {W}}d{\vec {S}}=\int \limits _{C_{1}}{\overrightarrow {W}}d{\vec {S}}+\int \limits _{C_{2}}{\overrightarrow {W}}d{\vec {S}}+\int \limits _{C_{3}}{\overrightarrow {W}}d{\vec {S}}+\int \limits _{C_{4}}{\overrightarrow {W}}d{\vec {S}}=}
=
∫
C
1
W
x
(
x
,
y
0
,
z
0
)
d
x
+
∫
C
2
W
y
(
x
0
+
Δ
x
,
y
,
z
0
)
d
y
−
{\displaystyle =\int \limits _{C_{1}}W_{x}(x,y_{0},z_{0})dx+\int \limits _{C_{2}}W_{y}(x_{0}+\Delta x,y,z_{0})dy-}
−
∫
C
3
W
x
(
x
,
y
0
+
Δ
y
,
z
0
)
d
x
−
∫
C
4
W
y
(
x
0
,
y
,
z
0
)
d
y
=
{\displaystyle -\int \limits _{C_{3}}W_{x}(x,y_{0}+\Delta y,z_{0})dx-\int \limits _{C_{4}}W_{y}(x_{0},y,z_{0})dy=}
=
∫
[
W
x
(
x
,
y
0
,
z
0
)
−
W
x
(
x
,
y
0
+
Δ
y
,
z
0
)
]
d
x
+
{\displaystyle =\int {\Bigl [}W_{x}(x,y_{0},z_{0})-W_{x}(x,y_{0}+\Delta y,z_{0}){\Bigr ]}dx+}
+
∫
[
W
y
(
x
0
+
Δ
x
,
y
,
z
0
)
−
W
y
(
x
0
,
y
,
z
0
)
]
d
y
=
{\displaystyle +\int {\Bigl [}W_{y}(x_{0}+\Delta x,y,z_{0})-W_{y}(x_{0},y,z_{0}){\Bigr ]}dy=}
=
∂
W
y
∂
x
⋅
Δ
x
Δ
y
−
∂
W
x
∂
y
⋅
Δ
x
Δ
y
=
{\displaystyle ={\frac {\partial W_{y}}{\partial x}}\cdot \Delta x\Delta y-{\frac {\partial W_{x}}{\partial y}}\cdot \Delta x\Delta y=}
=
Δ
S
⋅
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
.
{\displaystyle =\Delta S\cdot {\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}.}
Uvršatavanjem u
definiciju rotacije, te potpunom analogijom, imamo:
z
^
⋅
rot
W
→
=
lim
Δ
S
→
0
∮
W
→
d
S
→
Δ
S
=
lim
Δ
S
→
0
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
Δ
S
Δ
S
=
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
=
(
rot
W
→
)
z
.
{\displaystyle {\hat {z}}\cdot {\mbox{rot}}{\overrightarrow {W}}=\lim _{\Delta S\rightarrow 0}{\frac {\oint {\overrightarrow {W}}d{\vec {S}}}{\Delta S}}=\lim _{\Delta S\rightarrow 0}{\frac {{\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}\Delta S}{\Delta S}}={\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}=({\mbox{rot}}{\overrightarrow {W}})_{z}.}
(
rot
W
→
)
x
=
(
∂
W
z
∂
y
−
∂
W
y
∂
z
)
{\displaystyle ({\mbox{rot}}{\overrightarrow {W}})_{x}={\Bigl (}{\frac {\partial W_{z}}{\partial y}}-{\frac {\partial W_{y}}{\partial z}}{\Bigr )}}
(
rot
W
→
)
y
=
(
∂
W
x
∂
z
−
∂
W
z
∂
x
)
{\displaystyle ({\mbox{rot}}{\overrightarrow {W}})_{y}={\Bigl (}{\frac {\partial W_{x}}{\partial z}}-{\frac {\partial W_{z}}{\partial x}}{\Bigr )}}
(
rot
W
→
)
z
=
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
{\displaystyle ({\mbox{rot}}{\overrightarrow {W}})_{z}={\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}}
rot
W
→
=
x
^
(
∂
W
z
∂
y
−
∂
W
y
∂
z
)
+
y
^
(
∂
W
x
∂
z
−
∂
W
z
∂
x
)
+
z
^
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
.
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}={\hat {x}}{\Bigl (}{\frac {\partial W_{z}}{\partial y}}-{\frac {\partial W_{y}}{\partial z}}{\Bigr )}+{\hat {y}}{\Bigl (}{\frac {\partial W_{x}}{\partial z}}-{\frac {\partial W_{z}}{\partial x}}{\Bigr )}+{\hat {z}}{\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}.}
Očito u danoj
fomuli možemo prepoznati simbolički zapisanu determinantu :
rot
W
→
=
|
x
^
y
^
z
^
∂
∂
x
∂
∂
y
∂
∂
z
W
x
W
y
W
z
|
.
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}=\left|{\begin{array}{ccc}\displaystyle {\hat {x}}&\displaystyle {\hat {y}}&\displaystyle {\hat {z}}\\\displaystyle {\frac {\partial }{\partial x}}&\displaystyle {\frac {\partial }{\partial y}}&\displaystyle {\frac {\partial }{\partial z}}\\\displaystyle {W_{x}}&\displaystyle {W_{y}}&\displaystyle {W_{z}}\end{array}}\right|.}
Nadalje, očito je
rot
W
→
=
(
x
^
∂
∂
x
+
y
^
∂
∂
y
+
z
^
∂
∂
z
)
×
(
x
^
W
x
+
y
^
W
y
+
z
^
W
z
)
=
∇
→
×
W
→
,
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}={\Bigl (}{\hat {x}}{\frac {\partial }{\partial x}}+{\hat {y}}{\frac {\partial }{\partial y}}+{\hat {z}}{\frac {\partial }{\partial z}}{\Bigr )}\times ({\hat {x}}W_{x}+{\hat {y}}W_{y}+{\hat {z}}W_{z})={\vec {\nabla }}\times {\overrightarrow {W}},}
pa
rot
W
→
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}}
često označavamo s
∇
→
×
W
→
{\displaystyle {\vec {\nabla }}\times {\overrightarrow {W}}}
, gdje je
∇
→
{\displaystyle {\vec {\nabla }}}
Hamiltonov operator.
Za rotaciju vrijedi Stokesov teorem
∫
S
rot
W
→
⋅
d
A
→
=
∫
C
W
→
⋅
d
S
→
.
{\displaystyle \int \limits _{S}{\mbox{rot}}{\overrightarrow {W}}\cdot d{\vec {A}}=\int \limits _{C}{\overrightarrow {W}}\cdot d{\vec {S}}.}
|
(
rot
W
→
)
ρ
|
=
1
ρ
∂
W
z
∂
φ
−
∂
W
φ
∂
z
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{\rho }|={\frac {1}{\rho }}{\frac {\partial W_{z}}{\partial \varphi }}-{\frac {\partial W_{\varphi }}{\partial z}}}
|
(
rot
W
→
)
φ
|
=
∂
W
ρ
∂
z
−
∂
W
z
∂
ρ
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{\varphi }|={\frac {\partial W_{\rho }}{\partial z}}-{\frac {\partial W_{z}}{\partial \rho }}}
|
(
rot
W
→
)
z
|
=
1
ρ
∂
∂
ρ
(
ρ
W
φ
)
−
1
ρ
∂
W
ρ
∂
φ
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{z}|={\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}(\rho W_{\varphi })-{\frac {1}{\rho }}{\frac {\partial W_{\rho }}{\partial \varphi }}}
rot
W
→
=
[
1
ρ
∂
W
z
∂
φ
−
∂
W
φ
∂
z
]
ρ
^
+
[
∂
W
ρ
∂
z
−
∂
W
z
∂
ρ
]
φ
^
+
[
1
ρ
∂
∂
ρ
(
ρ
W
φ
)
−
1
ρ
∂
W
ρ
∂
φ
]
z
^
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}={\biggl [}{\frac {1}{\rho }}{\frac {\partial W_{z}}{\partial \varphi }}-{\frac {\partial W_{\varphi }}{\partial z}}{\biggr ]}{\hat {\rho }}+{\biggl [}{\frac {\partial W_{\rho }}{\partial z}}-{\frac {\partial W_{z}}{\partial \rho }}{\biggr ]}{\hat {\varphi }}+{\biggl [}{\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}(\rho W_{\varphi })-{\frac {1}{\rho }}{\frac {\partial W_{\rho }}{\partial \varphi }}{\biggr ]}{\hat {z}}}
|
(
rot
W
→
)
r
|
=
1
r
sin
ϑ
∂
∂
ϑ
(
W
φ
sin
ϑ
)
−
1
r
sin
ϑ
∂
W
ϑ
∂
φ
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{r}|={\frac {1}{r\sin \vartheta }}{\frac {\partial }{\partial \vartheta }}(W_{\varphi }\sin \vartheta )-{\frac {1}{r\sin \vartheta }}{\frac {\partial W_{\vartheta }}{\partial \varphi }}}
|
(
rot
W
→
)
ϑ
|
=
1
r
sin
ϑ
∂
W
r
∂
φ
−
1
r
∂
∂
r
(
r
W
φ
)
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{\vartheta }|={\frac {1}{r\sin \vartheta }}{\frac {\partial W_{r}}{\partial \varphi }}-{\frac {1}{r}}{\frac {\partial }{\partial r}}(rW_{\varphi })}
|
(
rot
W
→
)
φ
|
=
1
r
∂
∂
r
(
r
W
ϑ
)
−
1
r
∂
W
r
∂
ϑ
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{\varphi }|={\frac {1}{r}}{\frac {\partial }{\partial r}}(rW_{\vartheta })-{\frac {1}{r}}{\frac {\partial W_{r}}{\partial \vartheta }}}
rot
W
→
=
[
1
r
sin
ϑ
∂
∂
ϑ
(
W
φ
sin
ϑ
)
−
1
r
sin
ϑ
∂
W
ϑ
∂
φ
]
r
^
+
[
1
r
sin
ϑ
∂
W
r
∂
φ
−
1
r
∂
∂
r
(
r
W
φ
)
]
ϑ
^
+
[
1
r
∂
∂
r
(
r
W
ϑ
)
−
1
r
∂
W
r
∂
ϑ
]
φ
^
.
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}={\biggl [}{\frac {1}{r\sin \vartheta }}{\frac {\partial }{\partial \vartheta }}(W_{\varphi }\sin \vartheta )-{\frac {1}{r\sin \vartheta }}{\frac {\partial W_{\vartheta }}{\partial \varphi }}{\biggr ]}{\hat {r}}+{\biggl [}{\frac {1}{r\sin \vartheta }}{\frac {\partial W_{r}}{\partial \varphi }}-{\frac {1}{r}}{\frac {\partial }{\partial r}}(rW_{\varphi }){\biggr ]}{\hat {\vartheta }}+{\biggl [}{\frac {1}{r}}{\frac {\partial }{\partial r}}(rW_{\vartheta })-{\frac {1}{r}}{\frac {\partial W_{r}}{\partial \vartheta }}{\biggr ]}{\hat {\varphi }}.}