भारतीय गणितज्ञः From Wikipedia, the free encyclopedia
ब्रह्मगुप्तः(हिन्दी: ब्रह्मगुप्त:,आङ्ग्ल: Brahmagupta) (५९८-६६८) महान् गणितज्ञः, ज्योतिषी च आसीत् । तस्य जन्म भिल्लमलपुरे अभवत् । सः हर्षमहाराजस्य राज्ये वसति स्म । अयं गणितविषये ज्योतिष्यविषये च बहूनि पुस्तकानि अलिखत् । तदीयं सुप्रसिद्धः ग्रन्थः नाम 'ब्रह्मस्फुटसिद्धान्तः' । एतं ग्रन्थं सः ६२८ तमे वर्षे अलिखत् । अस्मिन् ग्रन्थे २५ अध्यायाः सन्ति ।
ब्रह्मगुप्तः | |
---|---|
जननम् | ५९८ |
मरणम् | ६६८ |
कार्यक्षेत्राणि | गणितम्, ज्योतिषः |
विषयेषु प्रसिद्धः | शून्यम् (सङ्ख्या) |
ब्रह्मगुप्तः चक्रियचतुर्भुजस्य (आङ्ग्लः cyclic quadrilaterals) सूत्रम् प्रकाशितवान्। यद्यपि सः एवंविधं सूत्रम् दत्तवान् तथापि सः एतेषां चतुर्भुजानां वर्तुलत्वे न अवधानं दत्तवान्। चक्रियचतुर्भुजानां कोणदैर्घ्यं स्वीकृत्य ब्रह्मगुप्तः तेषां फलस्य निकटं सूत्रं विशुद्धं सूत्रं च दत्तवान् आसीत्।
ब्रह्मगुप्तः ५९८ तमे वर्षे भारतस्य राजस्थनमण्डले स्थिते भिन्माल्-नगरे जन्म प्राप्नोत् । अस्य पिता जिष्णुगुप्तः । जिष्णुगुप्तः स्वस्य जीवनस्य महान्तं भागं भिल्लमलपुरे (अद्यत्वे अयं प्रदेशः भिन्माल् इति कथ्यते) एव अयापयत् । तस्मिन् समये राज्ञः व्याघ्रमुखस्य शासनम् आसीत् । अतः एव जनाः ब्रह्मगुप्तं भिल्लमलाचार्यः इति कथयन्ति स्म । ब्रह्मगुप्तः उज्जयिन्यां विद्यमानस्य खगोलवीक्षणकेन्द्रस्य प्रमुखः आसीत् । अस्मिन् समये तेन गणित-ज्योतिष्यविषययोः चत्वारः ग्रन्थाः लिखिताः - चण्डमेखला (६२४ तमे वर्षे), ब्रह्मस्फुटसिद्धान्तः (६२८ तमे वर्षे), खण्डखाद्यकम् (६६५ तमे वर्षे) । तेषु ब्रह्मफुटसिद्धान्तः अत्यन्तं प्रसिद्धः जातः । अस्य ग्रन्थस्य अराबिभाषया अनुवादः अपि कृतः ।
ब्रह्मगुप्तः प्रचीनभारतस्य महतां गणितशास्त्रीणां वार्तायाम् अद्यापि सादरं वन्द्यते । सः प्राचीनभारतस्य महान् गणतज्ञः ज्योतिषी च आसीत् । आर्यभट्टः भास्कराचार्यश्च परिवर्तनस्य अभिगमयुतौ आस्ताम् । किन्तु ब्रह्मगुप्तः रुढिचुस्तः परंपरावादी च आसीत् । सः प्राचानेषु विचारेषु विश्वसति स्म । तथापि तस्य योगदानेन भारतस्य प्रचीनगणितं समृद्धम् अभवत् । तेन प्राचीन भारतस्य गणितक्षेत्राय दिशादर्शनं कृतम् ।[१] अङ्कगणितस्य बीजगणितस्य च खगोलविज्ञाने ज्योतिषशास्त्रे च उपयोगस्य श्रेयः ब्रह्मगुप्तं प्रति गच्छति । शून्यस्य गुणधर्माणां व्याख्यां कृत्वा तस्य उपयोगं च कृत्वा शून्यस्य महत्वाधिक्यकरणस्य श्रेयः ब्रह्मगुप्तं प्रति गच्छति । वर्गमूलं घनमूलं च सरलम् अभवत् तस्य श्रेयः अपि एतं प्रति गच्छति ।[२]
ब्रह्मगुप्तस्य जन्म ५९८ तमे वर्षे राजस्थानराज्यस्य भिन्नमाल- ग्रामे अभवत् । सः ग्रामः गुजरातराजस्थानराज्ययोः निकटवर्ति अस्ति । सः ब्रह्मस्फुट सिद्धान्त इति नामके ग्रन्थे स्वस्य विषये अलिखत् यत्
श्री चाम्पवन्च्यतिलकेश्री व्यघ्रमुखे नृपाणाम्
पंञ्चारचत्सं युत्कैः वर्षरचतै पञ्च भिरतीतै ।
ब्रह्मस्फुट सिद्धान्त सज्जन गणितज्ञ गोलतित्प्रीत्यै
त्रिच्चरुर्षेण कृतो जिष्णुगुप्त ब्रह्मगुप्तेन ।।
अनेन श्लोकेन ज्ञायते यत् ब्रह्मगुप्तस्य पितुः नाम जिष्णुगुप्तः आसीत् । ब्रह्मगुप्त 30 वर्षस्य वयसि ब्रह्मस्फुट सिद्धान्त इति नामकं ग्रन्थम् अलिखत् । [३] तत् भागतीय खगोलशास्त्राय गणिताय च महत्वपूर्णयोगदानरूपः अस्ति ।
ब्रह्मस्फुट सिद्धान्त ग्रन्थः 628 तमे वर्षे लिखितः । अस्मिन् ग्रन्थे 24 अध्यायाः सन्ति । तेषु द्वदशाय अध्यायाय गणिताचार्य इति नाम प्रदत्तम् । तस्मिन् अङ्कगणितस्य विषये छायागणितस्य विषये च लिखितम् अस्ति । अस्मिन्नैव ग्रन्थे कुट्टुकाध्याय इति अपरः अष्टादशः अध्यायोऽपि वर्तते तत्र बीजगणितस्य विषये रैखिकगणितस्य विषये वर्गसमीकरणविषये च समाधानं प्रदत्तम् अस्ति । तस्मिन्नैव त्रिकोणमिति इत्यस्योपरि अपि लिखितम् अस्ति । [४] ब्रह्मस्फुट सिद्धान्तस्य चत्वारः अध्यायाः मूलतया गणिताय समर्पिताः सन्ति । अस्य द्वादशे अध्याये अङ्कगणितस्य तथा जयामितेः समावेशः भवति । अष्टादशस्य अध्यायस्य कुट्टुक अर्थात् अनिर्णितानि समीकरणानि । सः अनेन नाम्ना गुट्टक इति नामकं गणित चचितम् । गणितस्य सिद्धान्तानां ज्योतिषशास्त्रे उपयोगः कथं कर्तव्यः इत्यपि तेन प्रतिपादितम् । [५]
ब्रह्मगुप्तेन करण खण्ड इति नामकम् अपरं पुस्तकमपि प्रकाशितं तस्मिन् अन्तर्वेशन, समतल त्रिकोणमिति गोलीय त्रिकोममिति इत्यादीनां नियमाः अपि प्राप्यन्ते । ततः परं कदंबकला, दूरकेन्द्र इति नामके पुस्तके प्रकाशिते । [६] अस्य रचनया आरबजनैः भारतीय गणितस्य ज्ञनं प्राप्तम् । अब्बासिंद खलिफा अल् मंसूर इत्ययं इराक्-देशे बगदाद-नगरस्य गचनाम् अकरोत् । सः उज्जैन-नगरात् एकं जनं तत्र आहूतवान् सः तत्र ब्रह्मगुप्तस्य ग्रन्थमपि नीतवान् । तस्यानुवादं कृत्वा सिन्द हिन्द इति ग्रन्थम् अलिखत् । तेन तत्रत्यैः जनैः भारतीयगणितस्य विषये ज्ञानं प्राप्तम् । [७]
शून्यस्य संशोधनेन निस्वस्मिन् क्रान्तिः आगता । तत् संशोधनम् आस्माकीनैः कृतम् तस्य गौरवं धरणीयम् । भारते शून्योपयोगस्य वास्तविकं प्रमाणं ८७६ तमस्य वर्षस्य मन्दिरस्य शीलालेखेषु प्राप्यते । अयं शिलालेखः मध्यप्रदेशराज्यस्य ग्वालियर-नगरस्य चतुर्भुजमन्दरे प्राप्यते । तत्र २७० इत्यस्य सख्यायाः लेखनम् साम्प्रतंय यथा भवति तथा अभवत् । तस्य अर्थः इत्थं नास्ति यत् ततः प्राक् शून्यस्य प्रयोगः न भवति स्म । किन्तु शिलालेखस्य माध्यमेन स्पष्टतया शून्योपयोगः सर्वप्रथमं तत्रैव दृश्यते।[८] प्राचीनायं पाण्डुलिप्यां शून्यस्य उपयोगः बिन्दुना भवति स्म । अतः शून्यस्य आर्यभट्टादपि ब्रह्मगुप्तः, महावीरः, भास्काराचार्यश्च मुखरः आसीत् ।।[९]
शून्यस्य नियमरचना ब्रह्मगुप्तस्य महत्वपूर्णं योगदानम् अस्ति । तेन उक्तं यत् शून्यस्य यया कयापि सङ्ख्यया सह उनाधिक्येन शून्यस्योपरि तस्य प्रभावः न भवति । शून्यस्य यया कया अपि सङ्ख्यया सह गुणनं भवति तर्हि तस्य परिणामं शून्यमेव भवति । किन्तु तेन शुन्यस्य विभाजने सत्यपि शून्यमेवावशिष्यते इति कथनम् अयोग्यमासीत् ।।।[१०]
ब्रह्मगुप्त इत्यनेन ६२८ तमे वर्षे ब्रह्मस्फुट सिद्धान्त इति नामके ग्रन्थे अङ्कगणितस्य केचन नियमाः उक्ताः।[११] तत्र कामपि सङ्ख्यां तस्मादेव न्यूनां करिष्यामः तर्हि शून्यस्य प्राप्तिः भवति । शून्यस्य एकधनात्मकसङ्ख्यायाः च योगः एकधनात्मकसङ्ख्या भवति, शून्यस्य शून्येन सह योगः अपि शून्यः एव भवति इति ।
ऋणस्य प्रक्रिया दुरूहा अस्ति । कामपि ऋणात्मकसङ्ख्यां शून्यात् न्यूनां करिष्यामः तर्हि धनात्मकसङ्ख्या आवशिष्यते । कामपि धनात्मकसङ्क्यां शून्यात् न्युनां करिष्यामः तर्हि ऋणात्मकसङ्ख्या अवशिष्यते । किन्तु शून्यं ऋणात्मकसङ्ख्यायाः न्यूनं करिष्यामः तर्हि ऋणात्मकसङ्या अवशिष्यते । शून्यात् शून्यं न्यूनं करिष्यामः चेदपि शून्यमेव अवशिष्यते ।
एकधनात्मकस्य ऋणात्मकस्य च सङ्ख्यायाः योगः तयोः अन्तरवदेव भवति, तयोः निरपेक्षमानं समानं स्याच्चेत् तयोः योगः अपि शून्यः एव भवति । ।।।[१२]
कामपि सङ्ख्यां शून्येन सह गुणिस्यामः चेत् तस्य उत्तरः अपि शून्यः एव भविष्यति इति किन्तु विभाजनस्य क्रिया अपि सरला भवति । यथा कामपि धनात्मकसङ्ख्यायाः ऋणात्मकसङ्ख्याः वा शून्येन सह विभाजनं करिष्यामः तर्हि तस्य उत्तररूपेण एकस्याः भिन्नसङ्ख्यायाः प्राप्तिः भवति । यस्य हरः(denominator) शून्यः भवति । शून्यस्य धनात्मकसङ्ख्ययाः वा ऋणात्मकसङ्ख्ययाः विभाजनं करिष्यामः तर्हि तस्य परिणामरूपेण शून्यस्य वा भिन्नसङ्ख्यायाः प्राप्तिः भवति । यस्य अंशः शून्यं हरः (denominator) सा सङ्ख्या एव भवति । [१३] किन्तु शून्यात् शून्यस्य विभाजनं कुर्मः तर्हि शून्यम् अवशिष्यते ब्रह्मगुप्तस्य इदं कथनं असत्यमासीत् । तथापि तस्य प्रयत्नाः श्लाघ्याः सन्ति ।
ब्रह्मगुप्तस्य २०० वर्षान्ते ८३० तमे वर्षे गणितशास्त्रिणा महावीरेण गणितसारसंङ्रहः इति एकः ग्रन्थः निर्मितः । तस्मिन् ब्रह्मगुप्तस्य गणितसिद्धान्तानामेव विवेचनम् अस्ति ।[१४] तेनापि शून्यात् शून्यस्य गुणने सति शून्यम् अवशिष्यते तथा ऋणप्रक्रियया तस्मिन् किमपि परिवर्तनं न भवति इति उक्तं किन्तु तथापि सः विभाजनप्रक्रिययाः उत्तरं दातुं समर्थः न अभवत् । [१५] ततः परं भास्कराचार्येण शून्यस्य सिन्द्धान्ताः प्रतिपादिताः । सः ब्रह्मगुप्तं गुरुः मत्वा गणितस्य संशोधनानि अकरोत् । सऽपि शून्यस्य विभाजनक्रियायाः विभाजनं कर्तुं समर्थः नाभवत् इति । कस्यापि सङ्ख्यायाः शून्येन सह विभाजनं करिष्यामः तर्हि एकस्याः भिन्नसङ्ख्यायाः एव प्राप्तिः भवति । तां सङ्ख्याम् अनन्त इत्यपि कथयितुं शक्नुमः । तस्मिन् किमपि योजयामः वा न्यूनं करिष्यामः तथापि तस्मिन् परिवरितनं न भवति इत्येतत् सर्वं भास्कराचार्येण उक्तम् ।
वर्गमूलस्य घनमूलस्य च सरला पद्धतिः अनेन दर्शिता । सः खगोलस्य गणितस्य च निष्णातः आसीत् । [१६] अतः तं खगोलगणितभ्यां जनाः तं स्मरन्ति वा उभयोः निष्णाताः तं स्मरन्ति इति ।[१७] इतः परं शून्यस्य गुणधर्माणां व्याख्यां दत्त्वा समीकरणस्य संशोधनपद्धतिरपि तेन दर्शिता । सः ब्रह्मगुप्तस्य सिद्धान्त इति पुस्तके एकं श्लोकं लिखितवान् । सः श्लोकः - </poem> वर्गचतुर्गुणितानां रूपाणां वध्यवर्ग सहितानाम् । मूलमध्येनोन वर्ग द्विगुणो धृतं मध्यः ।।
</poem>
ब्रह्मगुप्तेन तादृशः चतुर्भुजस्य रचना कृता तस्य प्रक्रिया च बोधिता तस्मिन् सर्वेषां परिमाणं पूर्णमस्ति । [१८] सः भुजानां दैर्घ्यं , क्षेत्रफलं , वहिवृत्तस्य व्यासः, भुजानां प्रक्षेपः, कर्णानां प्रतिच्छेदेन च निर्मितखण्डानां परिमाणमपि पूर्णसङ्ख्यायां मिलति । ततः परं १७०७-१७८३ तमे वर्षे पाश्चात्त्यः गणितशास्त्री आयलर् इत्ययं चक्रिय चतुर्भुजस्य प्रक्रियां दर्शितवान् । ब्रह्मगुप्त मध्यवर्ति परिमाणस्य विषये द्वितीय स्तरस्य अन्तर्वेशन सूत्राणि अयच्छत्[१९] । तानि च साम्प्रतं वहु प्रसिद्धान सन्ति । सः चतुर्भुजस्य भुजानां क्षेत्रफलस्य, त्रिभुजस्य क्षेत्रफलं कर्ण इत्यस्य दैर्घ्यं ज्ञातुं सूत्रं प्रदत्तमस्ति । तच्च सूत्रं यथा </poem> कर्णाश्रित भुज धातैव्य मुजायथान्योन्य भाजितं गुणयेत । योगेन भुजप्रति भुजवधयोः कर्णोपदे विषमे ।। </poem> यदि a, b,c, d च चक्रिय चतुर्भुजस्य भुजाः तर्हि कर्ण 1 = √((ad+bc)/(ab+cd)×(ac+bd) ) कर्ण 2 =√((ab+cd)/(ab+bc)×(ac+bd) ) एतत् सूत्रं ब्रह्मगुप्तस्य प्रमेय इति नाम्ना प्रसिद्धम् अस्ति ।[२०] अर्थः अनुमानं कुरु ax+ bx = c तर्हि√(4ac+b^2-b)/2a साम्प्रतं गणितसूत्रं एतेन सह मिलति । Nx^2+ c=y^2 एतादृशां द्विघातीय अनिर्धार्य समीकरणानां समाधानार्थं ब्रह्मगुप्तेन द्वयोः पूर्वप्रमेययोः उपयोगः कृतः । सः पूर्वप्रमेयः साम्प्रतं आयलर् , लाङ्गरेज इति नाम्ना च प्रसिद्धौ अभवताम् । तौ पाश्चात्त्यगणितशास्त्रणां विद्वान्सौ स्तः । [२१] ब्रह्मगुप्तेन जयामिति इत्यस्य कृते अपि महत्वपूर्णं योगदानं प्रदत्तम् । तेन त्रिभुज चतुर्भुज क्षेत्रफलस्य ज्ञानाय अपि सूत्रं प्रदत्तम् । तच्च यथा
स्थूलफल त्रिचतुर्भुज बाहु प्रतिबाहुयोग दसवात ।
भुजयोगार्धचतुष्टय भुजोन घाताम् पदम् सूक्ष्मम् ।।
भुजानां योगेन अर्धं चतुर्वारं लिखित्वा भुजां ऋणां करोतु गुणनं कृत्वा वर्गमूलं अन्विष्यतु । तत् साम्प्रतं डबल्यु सेल् (१६१७) इति नाम्ना प्रसिद्धम् अस्ति ।[२२] ax + b = 0 , ax + bx + c = 0 एतत् द्वीघातीय समीकरणं जयामितेः समाधानं च प्रदत्तम् । अनेन सर्वप्रथमं गणितस्य बीजगणितस्य च विषये भेदः प्रदर्शितः । गणितस्य क्षेत्रेषु मौलिकप्रदानस्य कारणात् भास्कराचार्येण ब्रह्मगुप्तं गणकचक्र चूडामणि इति उपाधि प्रदत्ता ।
ब्रह्मगुप्तस्य गणितसाहित्यस्य अरबी फारसी इति उभायोः भाषयोः अभवत् । अरबी भाषायां सिन्द हिन्द इति नामकं पुस्तकं ब्रह्मस्फुट सिद्धान्त इत्यस्य अनुवादरूपमेवास्ति । ।[२३] असमात् अनुवादात् एव भारतस्य गणितम् आरब-देशेषु ततः परं पाश्चात्त्यदेशेषु च अगच्छत् । भारतीयाः विद्वांसः स्वप्रेरणया गर्भजसंस्कारेण च संशोधनानि कुर्वन्ति स्म । तेषु तर्कस्य विज्ञानस्य च दृष्ट्या व्यवहारिकता अधिकाधिका दृश्यते स्म । विश्वस्मिन् गणितस्य नियमानां संशोधनानि अभूवन् तस्य प्रेरणास्त्रोतरूपेण सन्दर्भरूपेण च अस्माकं गणितमेव मुखरमासीत् । ।[२४] तस्मिन् ब्रह्मपुप्तस्य गणितस्य प्रत्यक्षेण परोक्षेण वा योगदानम् अस्त्यैव । प्राचीनगणितस्य विकासकथायां ब्रह्मगुप्तः इति नाम न स्यात् चेत् प्राचीनं गणितं अपूर्णमेवावशिष्यते ।
ब्रह्मगुप्तः महान् खगोलशास्त्री गणितशास्त्रि च आसीत् । किन्तु तस्य वैचारिकाः अभिगमाः पारम्परिकाः आसन् । तस्य मानसे तत्कालीनस्य समाजस्य अधिकः प्रभावः आसीत् । ।[२५] यदा सः गणितस्य विचारान् प्रस्तौति तदा समाजस्य अग्रजाः पुरोहिताः ,ज्योतिषज्ञाः च क्रोधाविष्टाः न भवेयुः इति ध्यायति स्म । सः कस्यापि विरोधं कर्तुं नेच्छति स्म । आर्यभट्टस्य मते पृथिव्याः स्वकीयं गुरुत्वाकर्शणमस्ति अतः सा स्वस्य धुरौ भ्रमति इति ।।[२६] किन्तु ब्रह्मगुप्तस्य मते पृथिव्याः बलं नास्ति वस्तूनाम् आकर्षणं तस्याः स्वभावः अस्ति इति । पृथिव्याः उपरि जलं स्वस्य स्वभावेन वहति । सः अन्येषां आर्यभट्टदीनां विचारात् भिन्नं विचारयति स्म ।
विशिष्टव्यक्तित्वधारी ब्रह्मगुप्ताय भास्कराचार्यः गणकचक्र इति उपाधिं दत्तवान् । [२७] भाष्यकाराः तस्य विवेचकाश्च ब्रह्मगुप्तस्य जन्मस्थलेन व्यतीतजीवनकातणात् तं भिन्नमालाचार्य इत्यपि कथयन्ति स्म । तदानीन्तने काल् भिन्नमालस्य उल्लेखः गुर्जरप्रान्ते भवति स्म । अतः ब्रह्मगुप्तः गुर्जरः आसीत् इति गौरवस्य विषयः । भिन्नमाल उत्तरगुजरातस्य महत्वपूर्णं स्थलमस्ति इति ।
येन दिवसस्य गणना कृता ब्रह्मगुप्तः तादृक् प्रथमः गणितशास्त्री आसीत् ।[२८] तेन अपर्निशस्य गणनां कृत्वा एकस्मिन् वर्षे ३६५ दिनानि 6 घण्टाः १५ निमिषानि १९ पलानि च भवन्ति इति घटस्फोटः कृतः । साम्प्रतं वयं जानीमः यत् पृथिव्याः परितः सूर्यः एकां प्रदक्षिणां समापयति तदैव एकस्य वर्षस्य समापनं भवति इति । अस्याः भ्रमणदिशायाः आधारेणैव पृथिव्याः विविधेषु भूखण्डेषु ऋतूनां परिवर्तनं भवति स्म वातावरणस्य तापमाने अपि न्यूनाधिक्यं भवति स्म । ब्रह्मगुप्तेन यदा अस्याः गणनायाः संशोधनं कृतं तदा आधुनिकस्य विज्ञानस्य यन्त्राणामपि अभावः आसीत् ततापि सः साम्प्रतगणनायः निकटस्थः अस्ति । साम्प्रतगणनानुसारं वर्षस्य ३६५ दिनानि 6 घण्टाः ४८ निमेषाः ४५ पलानि च सन्ति । तदानीन्तने काले ब्रह्मगुप्तेन इदं संशोधनं कया रीत्या कृतम् तत् आश्चर्यस्य विषयः ।[२९]
(-a) – 0 = (-a) A- 0 = a 0 - 0 = 0 0 – (-a) = a 0 – a = (-a) a x 0 = 0 (-a) x 0 = 0 0 x 0 = 0 ऊर्ध्वोक्ताः नियमाः शून्यस्य विभिन्नाङ्कस्य स्वरूपस्य विषये सन्ति । इत्थमेव नालम् तेन ऋणात्मक अङ्कानां शून्यस्योपरि या गणना अस्ति तस्य गणितस्यापि सर्वेषां नियमानां वर्णनं तस्य ग्रन्थेषु दृश्यते । [३०]ते नियमाः अपि आधुनिकस्य गणितस्य निकटवर्तिनः सन्ति इति । तेन शून्यस्य विभाजनाय अपि नियमः प्रदत्तः 0 ÷ 0 = 0 किन्तु अयं नियमः अमान्यः अभवत् ।
AF = FDCoxeter, H. S. M.; Greitzer, S. L.ः Geometry Revisited. Washington, DCः Math. Assoc. Amer., p. 59, 1967 फलकम्:MathWorld
Brahmagupta's Theorem at cut-the-knot
प्रमेयः सूत्रम्
गणितं मूलतः गणनायाः आधारितः तर्कैः साध्यः व्यवहारस्य विषयः अस्ति । [३१]किन्तु तस्मिन् रसः न स्यात् चेत् खिन्नतायाः विषयः भवति इति । किन्तु अस्माकं प्राचीनैः गणितशास्त्रिभिः श्लोकानां माध्यमेन गणितस्य बोधः कारितः इति आनन्दस्य विषयः । गणितस्य ग्रन्थाः काव्यवत् गानस्य योग्यया रीत्या सम्पादिताः इति । अतः गणितं विद्वत् जनेषु एव पिहितं नाभवत् अपि तु प्रतिजनं गतः इति ।
गणितस्य ग्रन्ते ब्रह्मस्फुटसिद्धान्ते कर्णस्य, भुजानां, चक्रियचतुर्भुजस्य, वर्गमूलस्य,घनमूलस्य विषये च प्रतिपादितमित् ।[३२]
त्रिभुजस्य वधो भुज्यो द्वीगुणित लम्बोद्वतो हृदयरज्जुः
साद्विगुणिता त्रिचतुर्भुज कोण स्पृग्वृत विष्कम्भ ।
स्थूलफलम् त्रिटतुर्भुज बाहुप्रतिबाहु योगदलघातः
भुजयोगार्थ चतुष्टय भुजोनघात पद्मसूक्षम् ।।
कर्णाश्रित भुजघातैक्य मुभयथान्यो भाजित गुणयेत् ।
योगेन भुजप्रति भुजवभयोः कर्णोपदे विषये ।।
हृदयं विषमस्य भुजप्रतिभुज कृतियोग मुलाधर्म
जात्थद्वथकोटिभुजाः परकर्णगुणाः भुजाश्चतुर्विषमे
अधिकोभूर्मुखम हीनो बाहु द्वितयम भुजावन्यो ।।
क्षेत्रफलं बेधगुणं समखातफलं हतं त्रिभिः सुरयाः
मुखतल तुल्य भुजैकन्यान्येका ग्रहतानि समरज्जुः ।
प्रथम द्वीतीय नृजलान्तरेणोद्वता जलायसृति
द्वष्टयोच्चय गुणोच्छा यस्तोयान्त जलान्तरगुणाभुः ।।
युरोपखण्डे सिकन्दरिया इत्यस्य युनानि विद्याकेन्द्रे युकिलिक्, एपोलोनियस्, आर्किमिडिस्, हेरोन् तालिमी च इत्येते गणितज्ञाः ज्योतिषज्ञाश्च अभूवन् ।[३३] किन्तु ततः परं 800 वर्षाणि यावत् तत्र एकः अपि गणितज्ञः नाभवत् इति । अतः गणितक्षेत्रस्य विकासः नाभवत् इति । अस्मादेव कारणात् युरोपखण्डस्य सः समयः अन्धकारयुग इति नाम्ना प्रसिद्दः अभवत् । तदानान्तनो काले भारतदेशे आर्यभट्टः, ब्रह्मगुप्तः, महावीराचार्यः,भास्कराचार्यादिभिः गणितज्ञैः भारतीयं गणितं समृद्धियुक्तं कृतमिति ।
युरोपखण्डे नवजागृतियुगस्य आरम्भः ११ शताब्द्याम् अभवत् । मूलतया ईसाई तत्वज्ञैः सीरियाइ, युनानि संस्कृतस्य च ग्रन्थानामनुवादः कृतः । संस्कृतात् गणितस्य अनुवादः कृतः तत् ब्रह्मगुप्तनिर्मितमासीत् । तस्य ग्रन्थानां आरब-भाषायामनुवादः सन् युरोपखण्डादिषु तस्य बहुप्रचारः अभवत् इति । अतः ब्रह्मदुप्तः तेषाम् आद्यगुरुः मन्यन्ते । [३४]
महम्मद पयगम्बर इत्यस्य मृत्योः शतं वर्षानन्तरम् इस्लामधर्मस्य विकासः अभवत् ।[३५] तस्य उत्तराधिकारि खलिफा सिंहः सिन्ध् प्रन्तात् स्पेने यावत् स्वशासनलालकः अभवत् । तेन ७६२ तमे वर्षे दजला इति नाम्ना नद्याः तटे बगदाद्-नगरस्य स्थापना कृता । बगदाद्-नगरस्य कीर्तिः प्रतिदिनं वर्धिता भवति स्म । तस्य शासने प्रथमवारं गणतग्रन्थानाम् आरबभाषायाम् अनुवादः अभवत् इति । एकया किं वदन्त्याः आधारेण सिधप्रान्तस्य एकं सङ्घटनं खलिफा सिंहः इत्येतं मिलितुम् अगच्चत् । तेषु कङ्क इति नामकः कश्चन पण्डितः अपि आसीत् । सः गणितस्य ज्योतिषस्य च ग्रन्थान् बगदाद-नगर प्रति अनयत् । अतः गणितस्य क्षेत्रे ईस्लामधर्मस्य विकासः अभवत् इति ।
ब्रह्मगुप्तस्य बीजगणितक्षेत्रे महत्वपूर्णं योगदानम् अस्ति । बीजगणिते शून्यस्य उपयोगकर्ता सः प्रथमः भारतीयः आसीत् । कारणं तस्मिन् युगे बीजगणित इति शब्दस्य अस्तित्वं नासीत् । तेन बीजगणित इत्यस्य कृते कुट्टक इति शब्दप्रयोगः कृतः ।।[३६] बीजगणित इति शब्दप्रयोगः ब्रह्मस्फुट इति ग्रन्थस्य टीकाकारेण पृथृदक स्वामी इत्यनेन 860 तमे वर्षे कृता । प्रख्यातेन इतिहासकारेण सार्टन् इत्यनेन ब्रह्मगुप्ताय भारतस्य महान् गणितज्ञः इति उपाधिः प्रदत्ता ।[३७]
ब्रह्मगुप्तस्य विचाराः प्रायशः पुराणपन्थिनः आसन् किन्तु तथापि सः एकः गणितज्ञः खगोलज्ञश्चासीत् । ब्रह्मस्फुटसिद्धान्तस्य यन्त्राध्याये तेन खगोलयन्त्रस्य विषये बोधितमस्ति । ।[३८] तुरीय यन्त्रस्य संशोधनं तेन कृतमित्यपि कथनम् लोकप्रसिद्धमस्ति । तुरीययन्त्रं चन्द्राकारस्य आसीत् । ततः प्राक् अवकाशदर्शनार्थं गोलयन्त्रस्य उपयोगः भवति स्म ।
ब्रह्मगुप्तस्य अनेन कार्येण भारतीयाः आरब-देशीयाश्च तान् नितरां स्मरन्ति इति । भारतीयगणितज्ञेषु तस्य नाम मुकुटमणि एव शोभायमानम् अस्ति इति । भारतीयगणितस्य अङ्कपद्धत्याः गणितस्य च विषये आरब-देशीयाः जानन्ति स्म किन्तु अस्य ग्रन्थानाम् अध्ययनेन तैः भारतीयं गणितं अङ्कपद्धति च आत्मसाध कृता इति । इत्थं तस्य नितरां स्मरणमेव तस्य सर्वोच्चं सम्माननम् अस्ति इति ।
महता गणित शास्त्रिणा अल् ख्वारिजम् इत्यनेन बीजगणितस्य एकं पुस्तकं व्यलेखि तस्य महत्तमः आधारः ब्रह्मगुप्तस्य गणितम् आसीत् इति । तस्य पुस्तकस्य एव युरोपभाषायाम् अनुवादः अभवत् इति । ततः अलगोरिधम् इति शब्दः प्रसिद्धः अभवत् । सः शब्दः अल् ख्वारिजम् इत्यस्य पुस्तकात् स्वीकृतः यस्य उपयोगः सङ्गणकस्य (computer) गणनायाः गाणितिकसूत्रेषु अद्यापि भवति इति । आरबदेशीयानां कारणात् भारतीयानां गणितस्य सिद्धान्ताः युरोपखण्डं प्रति गताः किन्तु तस्य मूलं तु ब्रह्मगुप्तः आसीत् स च भारतीयः आसीदिति ।
ब्रह्मगुप्तस्य मृत्योः विषये कुत्रापि किमपि न लभ्यते किन्तु ऋषित्वात् सः दीर्घायुषी आसीदिति सर्वे आमनन्ति । गणितस्य क्षेत्रे तस्य जावनस्य सुगन्धः अध्यापि दृश्यते इति ।
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.