Уравнение Эйлера
одно из основных уравнений гидродинамики идеальной жидкости Из Википедии, свободной энциклопедии
Уравнение Эйлера — одно из основных уравнений гидродинамики идеальной жидкости. Названо в честь Л. Эйлера, получившего это уравнение в 1752 году (опубликовано в 1757 году). По своей сути является уравнением движения жидкости. До сих пор неизвестно, существует ли гладкое решение уравнения Эйлера в трёхмерном случае, начиная с заданного момента времени.[1]
Классическое уравнение Эйлера
Суммиров вкратце
Перспектива
Рассмотрим движение идеальной жидкости. Выделим внутри неё некоторый объём V. Согласно второму закону Ньютона, ускорение центра масс этого объёма пропорционально полной силе, действующей на него. В случае идеальной жидкости эта сила сводится к давлению окружающей объём жидкости и, возможно, воздействию внешних силовых полей. Предположим, что это поле представляет собой силы инерции или гравитации, так что эта сила пропорциональна напряжённости поля и массе элемента объёма. Тогда
где — поверхность выделенного объёма, — напряжённость поля. Переходя, согласно формуле Гаусса — Остроградского, от поверхностного интеграла к объёмному и учитывая, что , где — плотность жидкости в данной точке, получим:
В силу произвольности объёма подынтегральные функции должны быть равны в любой точке:
Выражая полную производную через конвективную производную и частную производную:
получаем уравнение Эйлера для движения идеальной жидкости в поле тяжести:
|
где
- — плотность жидкости,
- — давление в жидкости,
- — вектор скорости жидкости,
- — вектор напряжённости силового поля,
- — оператор набла для трёхмерного пространства.
Частные случаи
Суммиров вкратце
Перспектива
Стационарный одномерный поток
Для случая стационарного одномерного потока жидкости или газа уравнение Эйлера принимает вид
В этой форме уравнение часто используется для решения различных прикладных задач гидродинамики и газодинамики. В частности, интегрированием этого уравнения по при постоянной плотности жидкости получается известное уравнение Бернулли для несжимаемой жидкости:
Несжимаемая жидкость
Пусть . Используя известную формулу
перепишем соотношение в форме
Беря ротор и учитывая, что
а частные производные коммутируют, получаем, что
|
Адиабатическое течение
В случае, если происходит адиабатическое движение жидкости, то уравнение Эйлера можно переписать с использованием тепловой функции следующим образом:
- в силу того, что при адиабатическом процессе энтропия постоянна.
Следовательно:
Используя известное соотношение
и применяя операцию ротор к уравнению Эйлера, получим искомое представление в виде
См. также
- Уравнения Лагранжа
- Уравнение Эйлера в форме Громеки — Лэмба
- Уравнения движения вязкой жидкости
- Конформные преобразования — метод нахождения формы невязких течений, решений уравнения Эйлера.
- Уравнение вихря
- Список объектов, названных в честь Леонарда Эйлера
Примечания
Литература
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.