Loading AI tools
развязываемый узел Из Википедии, свободной энциклопедии
Тривиальный узел (или незаузлённый узел, англ. unknot) — геометрический узел, объемлюще-изотопный стандартному вложению окружности в трёхмерную сферу, а также объемлюще-изотопический класс такого геометрического узла.
Тривиальный узел | |
---|---|
Обозначения | |
Александера–Бриггса[англ.] | 01 |
Многочлены | |
Александера | |
Джонса |
|
Кауфмана |
|
Конвея | |
HOMFLY |
|
Инварианты | |
Инвариант Арфа[англ.] | 0 |
Число нитей | 1 |
Число мостов | 0 |
Число пересечений | 0 |
Род | 0 |
Число отрезков | 3 |
Число туннелей[англ.] | 0 |
Число развязывания | 0 |
Свойства | |
Простой, торический, расслоенный, полностью амфихиральный, срезанный | |
Медиафайлы на Викискладе |
Под окружностью здесь подразумевается подмножество евклидовой плоскости, а под стандартным вложением окружности в трёхмерную сферу – вложение , где или любое аналогичное отображение, отправляющее плоскость в одну из координатных плоскостей трёхмерного пространства.[1]
Эквивалентно можно определить тривиальный узел как геометрический узел, который продолжается до гладкого вложения двумерного диска в трёхмерную сферу, а также объемлюще-изотопический класс такого геометрического узла. Иными словами, любой геометрический узел, для которого существует гладко вложенный в трёхмерную сферу двумерный диск, границей которого является этот геометрический узел, называется тривиальным узлом и все тривиальные узлы являются объемлюще-изотопными.[2]
Узел, не являющийся тривиальным, принято называть нетривиальным узлом.[3]
Тривиальный узел играет существенную роль в различных задачах теории узлов и обладает рядом уникальных свойств.
Пусть – геометрический узел, причем . Если узел допускает диаграмму без перекрёстков, то, по определению, существует такая гиперплоскость в , проекция множества на которую является простой замкнутой кривой, лежащей в этой гиперплоскости. Зафиксируем и обозначим через произвольное вложение окружности в трёхмерную сферу, такое что совпадает с этой кривой, лежащей в гиперплоскости. Кривая , как кривая в , объемлюще-изотопна простой замкнутой кривой по построению. Не умаляя общности можно считать, что упомянутая выше гиперплоскость является, например, координатной -плоскостью в . Известно[5], что любые две простые замкнутые кривые в плоскости объемлюще-изотопны друг другу как кривые в плоскости, то есть кривая объемлюще-изотопна стандартному вложению окружности в -плоскость. Объемлющую изотопию -плоскости можно продолжить до изотопии всей трёхмерной сферы тождественно по третьей координате, а потому кривая и стандартное вложение окружности в трёхмерную сферу объемлюще-изотопны как кривые в . Тогда по транзитивности геометрический узел объемлюще-изотопен стандартному вложению окружности в трёхмерную сферу, а значит тривиален.
Эквивалентная переформулировка теоремы о простоте тривиального узла вносит ясность в устройство моноида узлов, а именно, утверждает, что ни один нетривиальный элемент этого моноида не имеет обратного. Этот элементарный, но нетривиальный результат имеет несколько независимых доказательств.
Классический вопрос алгоритмической теории узлов — задача распознавания тривиального узла. Задача состоит в том, чтобы создать алгоритм, который по поданной на вход диаграмме узла выводил бы ответ, является ли данный узел тривиальным. Существует ряд алгоритмов, решающих эту задачу, однако основной вопрос на данный момент остаётся открытым, а именно, существует ли полиномиальный алгоритм распознавания тривиального узла. Стоит отметить, что диаграммы тривиального узла могут быть очень сложными как к визуальному, так и к машинному распознаванию. Классическим примером «трудной» диаграммы тривиального узла является так называемый «Гордиев узел Хакена».
С тривиальным узлом связан ряд инвариантов, обобщённо называемых числа развязывания. Исторически первым подобным инвариантом было классическое число развязывания узла, то есть минимальное количество применений преобразования переключения перекрёстков, необходимое для превращения данного узла в тривиальный. Несколько позже, с развитием теории преобразований узлов, появились соответствующие инварианты и для других преобразований, например, число H(2)-развязываний или число Δ-развязываний.[7][8]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.