Loading AI tools
Из Википедии, свободной энциклопедии
В экономической науке, теории игр, теории принятия решений теория ожидаемой полезности — альтернатива математическому ожиданию, формула, которая может использоваться рациональным игроком при принятии решений.
Рациональный игрок при выборе решения пытается максимизировать некоторую величину (благо); кажется естественным в качестве такой величины использовать математическое ожидание блага, появляющегося в результате избранного решения. Однако опыт показывает, что в реальной жизни многие участники лотерей выбирают решение с меньшим математическим ожиданием, но и с меньшим риском. Например, поставленные перед выбором получить тысячу рублей с вероятностью 0,2 % (математическое ожидание — 2 рубля) или получить один рубль с вероятностью 100 % (математическое ожидание — 1 рубль), многие люди предпочтут гарантированную выплату, несмотря на её меньшее математическое ожидание. Для описания такого поведения и была придумана формула ожидаемой полезности.
В 1947 году вышло второе издание книги Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение», где впервые была изложена теория ожидаемой полезности. Новая теория возникла как дополнение к теории игр. В вводной главе книги, рассказывающей о применении теории игр в экономике, авторы кратко излагают основные положения экономической теории и предлагают новый метод для оценки полезности благ — именно здесь и была изложена аксиоматика теории ожидаемой полезности[1].
В 1948 году математик Леонард Сэвидж и экономист Милтон Фридмен разработали теорию отношения к риску. Они поделили людей на два типа: склонных к риску (любителей лотерей, азартных игр, рискованных инвестиций) и испытывающих неприятие к риску. Для склонных к риску возможность сыграть честную в лотерею оценивается выше, чем её достоверный эквивалент. Те же, кто испытывает неприятие к риску, наоборот ниже оценивают возможность сыграть в лотерею[1].
Поведение рационального игрока в теории ожидаемой полезности основывается на четырёх аксиомах:
В предположении, что аксиомы выполняются, а благо аддитивное, предпочтения рационального игрока будут определяться сравнительно простой формулой.
Функционал риска является линейным, таким образом полезность фон Неймана — Моргенштерна для благ можно представить в виде , где
Здесь — это i-й результат, а — его полезность.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.