Loading AI tools
Из Википедии, свободной энциклопедии
Теорема тангенсов[1] — теорема, связывающая между собой тангенсы двух углов треугольника и длины сторон, противоположные этим углам.
Теорема тангенсов, хотя не настолько широко известна как теорема синусов или теорема косинусов, достаточна полезна, и может быть использована в тех случаях, когда известны две стороны и один угол, или, наоборот, два угла и одна сторона.
Теорема тангенсов для сферических углов была описана в XIII веке персидским математиком Насиром ад-Дином Ат-Туси (1201—1274), который также привёл теорему синусов для плоских треугольников в своей пятитомной работе Трактат о полном четырёхугольнике.[2][3]
Теорему также называют формулой Региомонтана по имени немецкого астронома и математика Иоганна (или Йоганна) Мюллера (лат. Regiomontanus), установившего эту формулу. И. Мюллера называли «Кёнигсбержец»: по-немецки König — король, Berg — гора, а по-латински «король» и «гора» в родительном падеже — regis и montis. Отсюда «Региомонтан» — латинизированная фамилия И. Мюллера.[4]
На рис. 1, a, b, и c — это длины трёх сторон треугольника, и α, β, и γ — это углы, лежащие соответственно напротив этих трёх сторон (противолежащие углы). Теорема тангенсов утверждает, что
Доказать теорему тангенсов можно с помощью теоремы синусов:
Пусть
откуда
Отсюда следует, что
Используя известное тригонометрическое тождество
получаем:
Вместо формулы для суммы и разности синусов двух углов, в доказательстве можно использовать следующее известное тождество
где — значения углов при соответствующих вершинах треугольника и — длины сторон соответственно между вершинами и , и , и .
что и требовалось доказать.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.