Теорема Планшереля

Из Википедии, свободной энциклопедии

Теорема Планшереля — утверждение о свойствах преобразования Фурье. Она утверждает, что для всякой функции, квадрат модуля которой интегрируем, существует и однозначно определена с точностью до значений на множестве меры нуль функция, являющаяся её преобразованием Фурье. Была доказана Планшерелем в 1910 году[1]. Играет важную роль в функциональном анализе.

Формулировка

Суммиров вкратце
Перспектива

Для всякой функции действительного переменного , принадлежащей множеству функций, чей квадрат модуля интегрируем на интервале , существует такая функция действительного переменного , также принадлежащая на интервале , что

.

Также выполняются равенства:

и

.

Функция , являющаяся преобразованием Фурье функции , однозначно определена с точностью до её значений на множестве меры нуль[2].

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.