Loading AI tools
стальные балки специального сечения, укладываемые на шпалах или других опорах для образования пути Из Википедии, свободной энциклопедии
Рельсы (от мн. ч. англ. rails — от лат. regula — прямая палка) — стальные балки специального сечения, укладываемые на шпалах или других опорах для образования пути, по которому перемещается подвижной состав железнодорожного транспорта[1], городских железных дорог, специализированный состав в шахтах, карьерах, крановое оборудование и так далее.
Эта статья описывает ситуацию применительно лишь к одному региону (Россия), возможно, нарушая при этом правило о взвешенности изложения. |
Кроме того, облегчённые рельсы используются в кинематографе для передвижения операторских тележек. Изобретены древними римлянами, начальная ширина между ними составляла 143,5 см. Рельсы служат для направления колёс при их движении, непосредственно воспринимают и упруго передают давление от колёс на нижележащие элементы верхнего строения пути. На участках с электрической тягой рельсы служат проводниками обратного силового тока, а на участках с автоблокировкой — проводниками сигнального тока.
Рельсы для железнодорожного транспорта изготавливаются из углеродистой стали. Качество рельсовой стали определяется её химическим составом, микроструктурой и макроструктурой.
Углерод повышает твёрдость и износостойкость стали. Однако большое содержание углерода, при прочих равных условиях, делает сталь хрупкой, химический состав при повышении содержания углерода должен выдерживаться более жестко, особенно в отношении вредных примесей. Легирующие добавки типа марганца повышают твёрдость, износостойкость и вязкость стали. Кремний увеличивает твёрдость и износостойкость. Мышьяк увеличивает твёрдость и износостойкость стали, но в больших количествах уменьшает ударную вязкость. Ванадий, титан, цирконий — микролегирующие добавки, улучшают структуру и качество стали.
Фосфор и сера являются вредными примесями, повышающими хрупкость стали. Большое содержание фосфора делает рельсы хладноломкими, большое содержание серы — красноломкими (образуются трещины при прокате).
Микроструктура рельсовой стали представляет собой пластинчатый перлит с прожилками феррита на границах перлитовых зёрен. Твёрдость, сопротивление износу и вязкость достигается приданием стали однородной сорбитной структуры при помощи термической обработки путём поверхностной (на 8—10 мм) закалки головки или объёмной закалки рельса. Объёмнозакаленные рельсы имеют повышенную износостойкость и долговечность. Макроструктура рельсовой стали должна быть мелкозернистой, однородной, без пустот, неоднородностей и посторонних включений.
Форма рельсов менялась со временем. Существовали уголковые, грибовидные, двухголовые, широкоподошвенные рельсы. Современные широкоподошвенные рельсы состоят из головки, подошвы и шейки, соединяющей головку с подошвой. Поверхность катания делается выпуклой для передачи давления колёс по вертикальной оси рельса. Сопряжение поверхности катания с боковыми (вертикальными) гранями головки делается по кривой радиусом, близким к радиусу выкружки гребня колеса. Сопряжение головки и подошвы с шейкой рельса делается особенно плавным, а шейка рельса имеет криволинейные очертания, что обеспечивает наименьшую концентрацию местных напряжений. Подошве рельса придают достаточную ширину для обеспечения боковой устойчивости рельса и достаточной площади опоры для крепежных накладок.
Длина стандартного железнодорожного рельса, производимого рельсопрокатными заводами в России, составляет 12,5; 25,0; 50,0 и 100 метров. Железнодорожные рельсы широкой колеи обычно производят длиной 25 метров. Исходя из длины рельсов определяется длина и масса блюмов, так, для изготовленияя двух рельсов будет использован слиток блюма массой 9,8 т. [2] Для укладки на внутренних нитях кривых участков пути выпускаются укороченные рельсы. Длина бесстыковых плетей («бархатный путь») обычно находится в пределах от 400 м до длины перегона. Использование более длинных рельсов и сварных рельсовых плетей снижает сопротивление движению поездов, уменьшает износ подвижного состава и расходы на содержание пути. При переходе на бесстыковой путь сопротивление движению поездов уменьшается на 5−7 %, экономится около четырёх тонн металла на километр пути за счёт отсутствия стыковых скреплений.
Основной характеристикой рельса, дающей представление о его несущей способности, является масса одного погонного метра рельса в килограммах. При выборе типа рельса учитывается грузонапряженность линии, осевая нагрузка, скорость движения поездов. Более тяжёлый рельс распределяет давление колёс подвижного состава на большее число шпал, в результате чего замедляется их механический износ, уменьшается истирание и измельчение частиц балласта. При увеличении массы рельсов уменьшается расход металла на единицу пропускаемого тоннажа, сокращаются расходы по замене рельсов из-за увеличения срока их службы.
В России производство железнодорожных рельсов, предназначенных для звеньевого и бесстыкового пути железных дорог и для производства стрелочных переводов, регламентируется ГОСТ Р 51685-2013.
Рельсы железнодорожные подразделяют:
Рельсы в России производят на металлургических комбинатах в рельсобалочных цехах в Нижнем Тагиле, Челябинске и в Новокузнецке на площадке рельсового проката ЗСМК . В СССР рельсы также производили на комбинате Азовсталь.
Рельс A-B-C-D-Е-F…
где
Пример: Рельс типа Р65, категории Т1 из стали марки M76T, длиной 25 м с тремя болтовыми отверстиями на обоих концах рельса:
Рельс Р65-Т1-М76Т-25-3/2 ГОСТ Р 51685-2000
С 1884 года качеством рельсов в Российской империи, СССР и России заведует Рельсовая комиссия.
По действовавшим до 01.06.2001 г. российским стандартам рельсы изготавливались из мартеновской стали, и только исследования, проведённые в условиях ОАО НТМК и ОАО НКМК, позволили разработать новый стандарт. При этом были внесены изменения в ГОСТ Р 51685-2000 в части электропечного производства. В европейских, американских и азиатских стандартах давно оговорено использование кислородно-конвертерного и электросталеплавильного производства, кроме того, в ряде стандартов мартеновский способ производства не предусмотрен.
Система колесо-рельс обеспечивает непрерывное взаимодействие подвижного состава с верхним строением пути. Железные дороги Германии (DBAG) достигли значительных успехов в повышении ее эффективности. За последние 20 лет скорость пассажирских поездов стала выше, улучшились плавность хода и общая комфортность поездок. Качество и эффективность данной системы в значительной степени определяет инфраструктура. Необходимо, чтобы совершенствование подвижного состава осуществлялось с учетом сложившихся условий инфраструктуры. Важным вспомогательным средством оптимизации сопряжения между подвижным составом и верхним строением пути являются диагностические системы.
Форма сечения рельса выбрана именно такой неспроста, основная цель головки рельса это обеспечивать контакт колесо-рельс.
Взаимодействие колеса и рельса является ключевым в проблемах движения колеса относительно рельса. В этом взаимодействии должен быть по возможности низкий уровень трения для обеспечения движения больших масс с малым сопротивлением, но вместе с тем уровень трения должен быть достаточным для обеспечения требуемой силы тяги.
Для пассажирских поездов со скоростью до 300 км/ч и грузовых с осевыми нагрузками до 22,5 т (в перспективе до 25 т) требуется, чтобы верхнее строение пути отвечало высоким требованиям в отношении:
При этом важно, чтобы путь не имел дефектов, отвечал соответствующим правилам технической эксплуатации, имел высокое качество в отношении геометрии и динамических свойств, в том числе профиля рельсов, гарантирующего хороший контакт с колесом, устойчивое и безопасное движение экипажа.
Разработки в области подвижного состава разнообразны и не всегда оптимально согласуются с верхним строением пути с точки зрения оптимизации системы.
Применение подвижного состава с наклоняемыми кузовами обеспечивает повышение скорости поездов без инвестиций в дорогостоящую реконструкцию линий. При этом в ряде случаев повышение скорости в кривых может достигать 40 км/ч. Однако и в данной ситуации повышение скорости требует соответствующего повышения качества пути, связанного с дополнительными затратами.
Разработка и применение линейного вихретокового тормоза также влияют на систему колесо — рельс. Несмотря на выгоды от применения тормоза, не имеющего изнашивающихся элементов и не вызывающего износа рельсов, очевидны и его недостатки, поскольку он влияет на работу устройств СЦБ, которые в связи с этим требуют доработки. Кроме того, при использовании вихретокового тормоза в качестве служебного нужно принимать во внимание дополнительный нагрев рельсов, что при некоторых конструкциях верхнего строения пути влияет на стабильность его положения.
Температура рельсов повышается пропорционально увеличению частоты движения поездов, а в жаркие летние дни на участках торможения — экспоненциально. На рис. справа показан экстремальный случай в эксплуатации, когда повышение температуры вследствие использования вихретокового тормоза наложилось на нагрев от солнечного излучения. Этому предшествовал сбой в движении поездов, для ликвидации которого пришлось уменьшить интервал попутного следования с 7,5 до 3,5 мин. В результате этого к моменту времени 16 ч 30 мин температура рельсов повысилась до 82,8 °C. В бесстыковом пути это может привести к отрицательному воздействию на стабильность положения пути.
В XVIII веке рельсовые пути использовались на заводах и рудниках для транспортировки вагонеток, рельсы для них обычно отливались из чугуна и имели длину 3-4 фута (около 1 м). В 1799 году Вениамин Утрам впервые применил выпуклую форму рельсов[13]. В 1820 году Джон Бёркиншоу изобрёл способ производства железных рельсов — горячим прокатыванием из ковкого железа (полученного пудлингованием), такой рельс был длиной уже в 15 футов (4,5 метра)[13]. Они были укреплены на поперечинах в чугунных подушках[13][14]. Железные рельсы были не только длиннее, но и гораздо прочнее чугунных (склонных к раскалыванию), что дало возможность строить протяженные железные дороги. С развитием методов производства стали (бессемеровский процесс, томасовский процесс, мартеновский процесс) в 1850-1870 гг. рельсы стали изготавливать из неё, как из более прочного металла.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.