Loading AI tools
Из Википедии, свободной энциклопедии
Теоре́ма Лапла́са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 — 1827), которому приписывают формулирование этой теоремы в 1772 году[1], хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.
Для начала введём несколько определений.
Пусть — матрица размера , и пусть выбраны любые строк матрицы с номерами и любые столбцов с номерами .
Определитель матрицы, получаемой из вычеркиванием всех строк и столбцов, кроме выбранных, называется минором -го порядка, расположенным в строках с номерами и столбцах с номерами . Он обозначается следующим образом:
А определитель матрицы, получаемой вычеркиванием только выбранных строк и столбцов из квадратной матрицы, называется дополнительным минором к минору :
где и — номера невыбранных строк и столбцов.
Алгебраическое дополнение минора определяется следующим образом:
где , .
Справедливо следующее утверждение.
Теорема Лапласа
- Пусть выбраны любые строк матрицы . Тогда определитель матрицы равен сумме всевозможных произведений миноров -го порядка, расположенных в этих строках, на их алгебраические дополнения.
- где суммирование ведётся по всевозможным номерам столбцов
Число миноров, по которым берётся сумма в теореме Лапласа, равно числу способов выбрать столбцов из , то есть биномиальному коэффициенту .
Так как строки и столбцы матрицы равносильны относительно свойств определителя, теорему Лапласа можно сформулировать и для столбцов матрицы.
Рассмотрим квадратную матрицу
Выберем вторую и четвертую строки и разложим определитель этой матрицы по теореме Лапласа. Заметим, что в этих строках все миноры второго порядка, кроме , содержат нулевые столбцы, т.е. заведомо равны нулю и на сумму в теореме не влияют. Поэтому определитель будет равен:
Из приведенного примера видно, что теорема Лапласа упрощает вычисление определителей не всех матриц, а только матриц особого вида. Поэтому на практике чаще используются другие методы, например, метод Гаусса. Теорема больше применяется для теоретических исследований.
Широко известен частный случай теоремы Лапласа — разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.
Пусть — квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам:
Разложение по -й строке:
Разложение по -му столбцу:
где — алгебраическое дополнение к минору, расположенному в строке с номером и столбце с номером . также называют алгебраическим дополнением к элементу .
Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.
Рассмотрим квадратную матрицу
Разложим определитель по элементам первой строки матрицы:
(Обратите внимание, что у алгебраического дополнения ко второму элементу первой строки отрицательный знак).
Также определитель можно разложить, например, по элементам второго столбца:
Сумма произведений всех элементов некоторой строки (столбца) матрицы на алгебраические дополнения соответствующих элементов любой другой строки (столбца) равна нулю.
Рассмотрим сумму произведений всех элементов произвольной -ой строки матрицы на алгебраические дополнения соответствующих элементов любой другой, скажем, -ой строки матрицы . Пусть – матрица, у которой все строки, кроме -ой, такие же, как у матрицы , а элементами -ой строки матрицы являются соответствующие элементы -ой строки матрицы . Тогда у матрицы две одинаковые строки и, следовательно, по свойству матрицы об одинаковых строках имеем, что . С другой стороны, по следствию 1 определитель равен сумме произведений всех элементов -ой строки матрицы на их алгебраические дополнения. Заметим, что алгебраические дополнения элементов -ой строки матрицы совпадают с алгебраическими дополнениями соответствующих элементов -ой строки матрицы . Но элементами -ой строки матрицы являются соответствующие элементы -ой строки матрицы . Таким образом, сумма произведений всех элементов -ой строки матрицы на их алгебраические дополнения с одной стороны равна нулю, а с другой стороны равна сумме произведений всех элементов -ой строки матрицы на алгебраические дополнения соответствующих элементов -ой строки матрицы .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.