Равнобедренный треугольник

треугольник, у которого 2 стороны равны Из Википедии, свободной энциклопедии

Равнобедренный треугольник

Равнобедренный треугольниктреугольник, в котором две стороны имеют равную длину. Боковыми называются равные стороны, а третья сторона — основанием. Каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно[1].

Thumb
Равнобедренный треугольник

Терминология

Угол, образованный боковыми сторонами, называется вершинным углом, а углы, одной из сторон которых является основание, называются углами при основании[1].

Евклид определил равнобедренный треугольник как треугольник, который имеет две равные стороны, но современная трактовка[2] предпочитает определение, где треугольник имеет хотя бы две равные стороны, определяя таким образом равносторонний треугольник как частный случай равнобедренного.

Симметрия

Треугольник с двумя равными сторонами имеет одну ось симметрии, которая проходит через вершинный угол и середину основания. Эта ось симметрии совпадает с биссектрисой вершинного угла, медианой, проведённой к основанию, высотой, проведённой из вершинного угла и с серединным перпендикуляром[3][уточнить].

Свойства

Суммиров вкратце
Перспектива
Thumb
Свойства равнобедренного треугольника

В равнобедренном треугольнике углы при основании равны. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.

Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.

Пусть a — длина равных боковых сторон, b — длина основания, h — высота к основанию, R — радиус описанной окружности

  • (следствие теоремы косинусов);
  • ;
  • (следствие теоремы косинусов);
  • ;
  • (теорема о проекциях);

Радиус вписанной окружности может быть выражен пятью способами в зависимости от того, какие два параметра равнобедренного треугольника известны:

Углы могут быть выражены следующими способами:

  • (теорема синусов).
  • Угол также может быть найден без и . Треугольник делится медианой пополам, и в полученных двух равных прямоугольных треугольниках вычисляются углы :

Периметр равнобедренного треугольника находится следующими способами:

  • (по определению);
  • (следствие теоремы синусов).

Площадь треугольника находится следующими способами:

Теорема Лемуса-Штейнера

Если две биссектрисы треугольника равны, то этот треугольник — равнобедренный.


Лемус, Штейнер, XIX в.

Доказан этот признак равнобедренного треугольника был только в XIX веке двумя математиками, Лемусом и Штейнером, которые обменивались письмами в течение нескольких лет.

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.