Loading AI tools
упорядоченный список математических объектов Из Википедии, свободной энциклопедии
Последовательность в математике — пронумерованный набор каких-либо объектов, среди которых допускаются повторения, причём порядок объектов имеет значение. Нумерация чаще всего происходит натуральными числами. Обычно (особенно в математическом анализе) под последовательностью понимается бесконечная последовательность, при этом конечные последовательности в некоторых случаях также рассматриваются.
Наиболее часто изучаемый объект в классическом математическом анализе — числовая последовательность, в геометрии, в современных направлениях алгебры и анализа и приложениях изучаются также и нечисловые последовательности (например, последовательности элементов различных метрического пространства, временны́е ряды нечисловой природы, последовательности состояний систем управления и автоматов).
Формально последовательность определяется как отображение множества натуральных чисел в заданное множество (элементов множества ) произвольной природы. Образ натурального числа , а именно элемент , называется -м членом последовательности, а порядковый номер члена последовательности — его индексом.Подмножество множества , которое образовано элементами последовательности, называется носителем последовательности. Существует ряд обобщений, позволяющих нумеровать последовательности не только натуральными числами .
Подпоследовательностью последовательности называется зависящая от последовательность , где — возрастающая последовательность натуральных чисел. Подпоследовательность можно получить из изначальной последовательности, выкинув из неё некоторые члены.
Основные способы конструктивного задания последовательностей[1] — аналитический, где формула определяет последовательность -го члена, например: , и рекуррентный, например числа Фибоначчи, где любой член последовательности выражается через предшествующие: .
Основные вопросы, возникающие при изучении последовательностей:
Многочлен от одной переменной можно рассматривать как конечную последовательность его коэффициентов, или бесконечную — в предположении при .
Одной из наиболее известных нетривиальных бесконечных числовых последовательностей является последовательность простых чисел.
Каждому действительному числу может быть сопоставлена собственная последовательность, называемая цепной дробью — причём для рациональных чисел она всегда конечна, для алгебраических иррациональных чисел бесконечна (для квадратичных иррациональностей — периодична), а для трансцендентных чисел бесконечна и не периодична, хотя отдельные числа и могут встречаться в ней бесконечное число раз. Например, цепная дробь для числа конечна и равна , а цепная дробь числа уже бесконечна, не периодична и выглядит следующим образом: .
Любое отображение множества в себя также является последовательностью.
В геометрии часто рассматривается последовательность правильных многоугольников, форма которых зависит только от количества вершин.
Последовательность может состоять даже из множеств — к примеру, можно составить последовательность, в которой на -ой позиции находится множество всех многочленов степени с целыми коэффициентами от одной переменной.
Последовательности вида:
принято компактно записывать при помощи круглых скобок:
Иногда используются фигурные скобки:
Конечные последовательности могут записываться в следующем виде:
Также последовательность может быть записана как:
если функция была определена ранее, или же её обозначение может быть заменено на саму функцию. Например, при последовательность можно записать в виде .
Члены последовательности не обязательно должны нумероваться натуральными числами — к примеру, последовательность Фибоначчи может быть продолжена на отрицательные целые числа.
Существуют и так называемые многомерные последовательности, нумеруемые элементами декартова произведения . К таким относится, например, многомерное расширение последовательности Туэ — Морса. Также многочлен от нескольких переменных можно рассматривать как конечную -мерную последовательность, где на позиции находится коэффициент при произведении .
Трансфинитная последовательность — последовательность, нумеруемая всеми порядковыми числами до заданного ординала.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.