Loading AI tools
Из Википедии, свободной энциклопедии
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Из определения поверхностного интеграла первого рода следует независимость этого интеграла от выбора ориентации векторного поля единичных нормалей к поверхности или, как говорят, от выбора стороны поверхности. Пусть функции и интегрируемы по областям . Тогда:
Рассмотрим двустороннюю поверхность , гладкую или кусочно-гладкую, и фиксируем какую-либо из двух её сторон, что равносильно выбору на поверхности определенной ориентации.
Для определенности предположим сначала, что поверхность задана явным уравнением причём точка изменяется в области на плоскости , ограниченной кусочно-гладким контуром.
Пусть теперь в точках данной поверхности определена некоторая функция . Разбив поверхность сетью кусочно-гладких кривых на части и выбрав на каждой такой части точку , вычислим значение функции в данной точке и умножим его на площадь проекции на плоскость элемента , снабженную определенным знаком. Составим интегральную сумму
Конечный предел этой интегральной суммы при стремлении диаметров всех частей к нулю называют поверхностным интегралом второго рода от
распространённым на выбранную сторону поверхности , и обозначают символом
(здесь напоминает о площади проекции элемента поверхности на плоскость ).
Если вместо плоскости спроектировать элементы поверхности на плоскость или , то получим два других поверхностных интеграла второго типа:
В приложениях чаще всего встречаются соединения интегралов всех этих видов:
где суть функции от , определённые в точках поверхности .
где — единичный вектор нормали поверхности , — орт.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.