Поверхностные акустические волны в пьезоэлектриках

Из Википедии, свободной энциклопедии

Поверхностные акустические волны в пьезоэлектриках

Поверхностные акустические волны в пьезоэлектриках — упругие волны распространяющиеся около поверхности пьезоэлектрика (релеевские волны) или в тонких пьезоэлектрических плёнках (лэмбовские волны наблюдаются, когда толщина подложки сравнима с длиной волны), сопровождающиеся модуляцией электрического поля для пьезоэлектрически активных направлений. Движение частиц среды при обоих типах волн эллиптическое. Амплитуда релеевских волн спадает при удалении от поверхности и её можно рассматривать как затухающую волну. Метод генерации ПАВ в пьезоэлектриках с помощью встречно-гребёнчатого преобразователя предложен в 1965 году[1], что позволило найти широкое применение в обработке высокочастотных сигналов, линиях задержки, сенсорах и, в последнее время, для манипулирования частицами в микроканалах.

Thumb
Генерация ПАВ с помощью встречно-гребенчатого преобразователя. Справа — приёмные дорожки снимают сигнал, при этом происходит обратное преобразование механической энергии в переменный электрический ток, через нагрузочный резистор.

Теоретические основания

Суммиров вкратце
Перспектива

В линейной среде акустические волны полностью характеризуются уравнениями для смещений частиц Ui и потенциалом φ[2]:

где Tij, Sij — тензоры напряжений и деформаций; E, D — векторы напряженности и индукции электрического поля; Cijkl, eijk, εij — тензоры модулей упругости (этот тензор симметричен по последней паре индексов[3]), пьезомодулей и диэлектрической проницаемости соответственно; ρ — плотность среды. По повторяющимся индексам производится суммирование. Тензор модулей упругости задан при постоянном электрическом поле, а тензор диэлектрической проницаемости при постоянной деформации. Если пьезоэлектрик не содержит свободных зарядов, то его можно считать диэлектриком и для него выполняется закон Гаусса для индукции электрического поля:

Собственные полупроводники при достаточно низкой температуре удовлетворяют этому условию. Из вышеприведённой системы уравнений можно получить уравнения для акустических волн в пьезоэлектрике

Данные уравнения с граничными условиями полностью определяют задачу. При отсутствии пьезоэффекта решения уравнения (3.1) представляют собой упругие волны в анизотропной линейной среде.

Парциальные волны

Ищем решение уравнений (3.1) и (3.2) в виде плоских волн распространяющихся в направлении x1 и затухающие в направлении x3:

Подставляя эти решения в волновые уравнения получим систему уравнений на амплитуды

где элементы выражаются как

Чтобы нетривиальное решение уравнений существовало, нужно чтобы детерминант системы (5.1) был равен нулю. Это условие задаёт уравнение 8-й степени относительно b. Выбирая только решения в нижней комплексной мы найдём полное решение волновых уравнений:

где неизвестные коэффициенты Cm находятся из граничных условий заданных на поверхности пьезоэлектрика: условия ненагруженной поверхности T33=T31=T32=0 и непрерывности нормальной компоненты вектора электрической индукции D3. Для граничных условий (показан m-ый столбец) получим систему уравнений:

Из равенства детерминанта системы нулю находят фазовую скорость волны[4].

Симметрия кристаллов

Используя нотацию Фойгта тензор модулей упругости можно переписать в виде симметричной матрицы 6×6, которая имеет в общем случае 21 линейно независимую компоненту[5]. Для кристаллов кубической симметрии (кремний, арсенид галлия), где координатная система совпадает с осями кристаллической решётки есть только три независимые компоненты[6]:

Для кристаллов гексогональной симметрии (сульфид кадмия, окись цинка), где ось x3 совпадает с осью Z кристалла существует пять независимых компонент[6]:

Для кристаллов тригональной симметрии (классы 32, 3m, ), выделяют шесть независимых компонент[6]:

К этому классу относятся важные пьезоэлектрики такие как кварц, ниобат лития.

Тензор пьезоэлектрических постоянных в нотации Фойгта (последняя пара индексов заменяется) для кубической сингонии (классы 23 и ) имеют одну независимую компоненту[7]

Для кристаллов с гексогональной симметрией (точечная группа 6mm, поляризованная керамика по оси x3) — три компоненты:

Для точечной группы 32 (тригональная сингония) две компоненты:

а для точечной группы 3m — четыре[7]:

Тензор диэлектрических постоянных также зависит от направления в кристалле для групп 3m, 32, 6mm, и ε33≠ε1122. Для классов 23, , m3m: ε331122.

Взаимодействие ПАВ в пьезоэлектрике с ДЭГ

Суммиров вкратце
Перспектива

Рассмотрим простейший одномерный случай и, отбрасывая индексы, перепишем систему уравнений (1) в виде[8]:

Эта систему уравнений приводит к волновому уравнению для сдвига

В случае если пьезоэлектрик окажется хорошим проводником, то продольные звуковые волны (скорость ) не будут пьезоэлектрическими, а если — диэлектриком, то скорость волны станет . Коэффициент называется коэффициент электромеханической связи и принимает значения меньше 0,05 (для поверхности (100) GaAs в направлении [011] K²eff=6.4×10−4). Если в GaAs сформирован ДЭГ с проводимостью σ, то электрическое поле акустической волны приводит к потерям энергии из-за омических потерь. Коэффициент затухания Γ и изменение скорости пьезоакустической волны с частотой ω равны соответственно:

где λ — длина волны, σM=v0(1+ε). Здесь расстояние до ДЭГ от поверхности много меньше длины волны. В более общем случае изменение скорости и затухание связаны соотношением[9]:

где vs — скорость акустической волны для идеального проводника, q — волновой вектор, а коэффициенты α и σM зависят от материальных параметров. Отсюда видно, что взаимодействие ПАВ с ДЭГ зависит от продольной компоненты терзора проводимости, определяя бесконтактный метод его измерения.

Из-за наличия затухания часть импульса волны передаётся ДЭГ, приводя к возникновению акустоэлектрического тока (если цепь замкнута). Связь затухания и фазового сдвига с проводимостью благодаря взаимодействию ПАВ в пьезоэлектрике с ДЭГ изучалась в присутствии перпердикулярного магнитного поля в режиме целочисленного квантового эффекта Холла[8] и дробного квантового эффекта Холла[10]

Усиление ПАВ в полупроводниках с пьезоэлектрическими свойствами

Суммиров вкратце
Перспектива

Система уравнений для одномерного случая (8) в полупроводниках n-типа с пьезоэлектрическими свойствами следует дополнить уравнениями для полного тока (включает дрейфовую и диффузионную части)[11]

уравнением непрерывности

и теоремой Гаусса

Здесь μ — подвижность, q — элементарный заряд, Dn — коэффициент диффузии, концентрация электронов nc состоит из постоянной части n0 и меняющейся во времени вклада ns из-за действия электрического поля акустической волны. Помимо переменного электрического поля E1ejkx-jωt действует постоянное поле E0.

Коэффициент затухания в этом случае равен

где , , . Если дрейфовая скорость vd электронов больше скорости волны то γ меняет знак и, соответственно, вместо затухания происходит усиление поверхностной акустической волны.

Адиабатический транспорт в одномерных каналах

Взаимодействие ПАВ в пьезоэлектрике с ДЭГ можно распространить на одномерные каналы, а именно сформированные с помощью латеральных затворов на поверхности GaAs. Бегущая ПАВ благодаря электрическому полю может создавать движущуюся потенциальную яму для отдельного электрона (которую можно представить как квантовую точку) в перекрытом одномерном канале, то есть индуцировать проводимость. Благодаря кулоновской блокаде за один период переносится один электрон, и результирующий ток определяется только частотой сигнала f и зарядом электрона[12][13]:

Такая простая формула открывает возможность использовать транспорт в квази-одномерных каналах в качестве эталона силы тока.

Применение

Датчики на поверхностных акустических волнах, линии задержки.

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.