Loading AI tools
квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов Из Википедии, свободной энциклопедии
Магно́н — квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов. В кристаллах с несколькими магнитными подрешётками (например, антиферромагнетиках) могут существовать несколько сортов магнонов, имеющих различные энергетические спектры. Магноны подчиняются статистике Бозе — Эйнштейна. Магноны взаимодействуют друг с другом и с другими квазичастицами. Существование магнонов подтверждается экспериментами по рассеянию нейтронов, электронов и света, которое сопровождается рождением или уничтожением магнона[источник не указан 3031 день].
Магнон | |
---|---|
Состав | Квазичастица |
Семья | Бозон |
Теоретически обоснована | 1930 г. Феликсом Блохом |
Масса | 0 МэВ/c2 (теоретически) |
Время жизни | ∞ (теоретически) |
Квантовые числа | |
Электрический заряд | 0 |
Спин | 1 |
Медиафайлы на Викискладе |
Концепция магнона была введена в 1930 г. Феликсом Блохом[1] для количественного объяснения феномена уменьшения спонтанной намагниченности[англ.] в ферромагнетиках. При температуре абсолютного нуля ферромагнетик достигает состояния наименьшей энергии, в котором атомные спины (а также и магнитные моменты) выстраиваются в одном направлении. По мере повышения температуры спины начинают отклоняться от общего направления, тем самым увеличивая внутреннюю энергию и уменьшая полную намагниченность. Если представить идеально намагниченный ферромагнетик как вакуумное состояние[англ.]*, то состояние при низких температурах, в котором идеальный порядок нарушен небольшим количеством перевёрнутых спинов, можно представить как газ из квазичастиц — магнонов. Каждый магнон уменьшает количество правильно выстроенных спинов на и полный магнитный момент вдоль оси квантования — на , где — это гиромагнитное отношение.
Количественная теория магнонов (квантованных спиновых волн) получила дальнейшее развитие в работах Тэда Хольстена[англ.], Генри Примакова[2] и Фримена Дайсона[3]. Используя модель вторичного квантования, они показали, что магноны ведут себя как слабо взаимодействующие квазичастицы, подчиняющиеся законам Бозе — Эйнштейна. Подробное описание теории магнонов можно найти в учебнике Чарльза Киттеля по физике твёрдого тела[4] или в ранней обзорной статье Ван Кранендонка и Ван Флека [5].
Непосредственное доказательство существования магнонов было найдено в 1957 г. Бертрамом Брокхаузом, который продемонстрировал неупругое рассеивание нейтронов на магнонах в ферритах[6]. Существование магнонов было продемонстрировано в ферромагнетиках, ферримагнетиках и антиферромагнетиках.
Эксперименты с антиферромагнетиками в сильных магнитных полях продемонстрировали, что магноны действительно подчиняются статистике Бозе — Эйнштейна. Бозе-эйнштейновская конденсация магнонов в антиферромагнетике при низких температурах была доказана Никуни и др.[7], а в ферримагнетике при комнатной температуре Демокритовым и др.[8].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.