Loading AI tools
Из Википедии, свободной энциклопедии
Магнитогидродинамический генератор, МГД-генератор — энергетическая установка, в которой энергия рабочего тела (электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.
В МГД-генераторе происходит прямое преобразование механической энергии движущейся среды в электрическую энергию. Движение таких сред описывается магнитной гидродинамикой (МГД), что и дало наименование устройству.
Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть — на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.
Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.
На заряженную частицу действует сила Лоренца.
Рабочим телом МГД-генератора могут служить следующие среды:
Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты). В настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы. Под действием магнитного поля носители зарядов отклоняются от траектории, по которой газ двигался бы в отсутствие поля. При этом в сильном магнитном поле может возникать поле Холла (см. эффект Холла) — электрическое поле, образуемое в результате соударений и смещений заряженных частиц в плоскости, перпендикулярной магнитному полю.
МГД-генераторы обладают свойством обратимости. При приложении на электроды электрического напряжения на электропроводящую среду будет действовать сила, как на проводник с током в магнитном поле. Эту силу можно использовать для перекачки токопроводящих жидкостей и газов.
МГД-генератор состоит из канала, по которому движется рабочее тело (обычно плазма), системы магнитов для создания магнитного поля и электродов, отводящих полученную энергию. В качестве магнитов могут быть использованы электромагниты или постоянные магниты, а также другие источники магнитного поля.
Газ способен проводить (см. электропроводность) электрический ток при нагреве до температуры термической ионизации, составляющей около 10 000 К. Для снижения этой температуры до 2200—2700 К в разогретый газ вводят присадки, содержащие щелочные металлы. Например, введение 1% калия в виде поташа позволяет увеличить электропроводность в десятки раз. Без присадок при температурах 2200—2700 К газ представляет собой низкотемпературную плазму и проводит ток хуже воды.
В отличие от МГД-генератора с жидким рабочим телом, где генерирование электроэнергии идёт только за счёт преобразования части кинетической или потенциальной энергии потока при постоянной температуре, в МГД-генераторах с газовым рабочим телом принципиально возможны три режима:
Описание работы МГД-генератора:
Классификация по продолжительности работы[1]:
Источниками тепла в МГД-генераторах могут быть:
В качестве рабочих тел в МГД-генераторах могут использоваться:
По типу рабочего цикла различают МГД-генераторы:
По способу отвода электроэнергии различают МГД-генераторы:
По форме каналы в МГД-генераторах могут быть:
По конструкции и способу соединения электродов различают следующие МГД-генераторы:
Наибольшее распространение с 1970-х годов получили кондукционные линейные МГД-генераторы на продуктах сгорания ископаемых топлив с присадками щелочных металлов, работающие по открытому циклу.
Впервые идея использования жидкого проводника была выдвинута Майклом Фарадеем в 1832 году. Он доказал, что в движущемся проводнике, находящемся под действием магнитного поля, возникает электрический ток. В 1832 году Фарадей с помощниками спустил с моста Ватерлоо в воду реки Темза два медных листа. Листы были подключены проводами к гальванометру. Ожидалось, что воды реки, текущей с запада на восток, — движущийся проводник и магнитное поле Земли создадут электрический ток, который зафиксируется гальванометром. Опыт не удался. К возможным причинам неудачи причисляют низкую электропроводность воды и малую величину напряженности магнитного поля Земли.
В дальнейшем, в 1851 году английскому учёному Волластону удалось измерить ЭДС, индуцированную приливными волнами в Ла-Манше, однако отсутствие необходимых знаний по электрофизическим свойствам жидкостей и газов долго тормозило использование описанных эффектов на практике.
В последующие годы исследования развивались по двум основным направлениям:
Хотя первые патенты на генерирование электричества МГД-генератором с применением ионизированного газа энергии были выданы ещё в 1907—1910 годы, описанные в них конструкции были на практике нереализуемы. Тогда не существовало материалов, способных работать в газовой среде при температуре 2500—3000 °C.
Разработка МГД-генераторов стала возможной после создания теоретической и экспериментальной базы для изучения магнитной гидродинамики. Основные законы МГД были открыты в 1944 году шведским учёным Ханнесом Альфвеном при изучении поведения космической плазмы (плазмы, заполняющей межзвёздное пространство) в магнитном поле.
Первый работающий МГД-генератор был построен только в 1950-х годах благодаря развитию теории магнитной гидродинамики и физики плазмы, исследованиям в области физики высоких температур и созданию к этому времени жаропрочных материалов, использовавшихся тогда, прежде всего, в ракетной технике.
Источником плазмы с температурой 3000 K в первом МГД-генераторе, построенном в США в 1959 году, служил плазмотрон, работавший на аргоне с присадкой щелочного металла для повышения степени ионизации газа. Мощность генератора составляла 11,5 кВт. К середине 1960-х годов мощность МГД-генераторов на продуктах сгорания удалось довести по 32 МВт («Марк-V», США).
В СССР первая лабораторная установка «У-02», работавшая на природном топливе, была создана в 1964 году[2]. В 1971 году была запущена опытно-промышленная энергетическая установка «У-25» Института высоких температур РАН, имеющая расчётную мощность 20−25 МВт.
«У-25» работала на продуктах сгорания природного газа с добавкой K2CO3 в качестве ионизирующейся присадки, температура потока — около 3000 К. Установка имела два контура:
Электрическое оборудование «У-25» состояло из МГД-генератора и инверторной установки, собранной на ртутных игнитронах. В 1992 году на базе опытно-промышленной площадки «У-25» была создана ТЭЦ-28, вошедшая в состав энергосистемы Москвы. В дальнейшем вошла в состав ТЭЦ-21.
В России промышленный МГД-генератор строился в Новомичуринске Рязанской области, где рядом с Рязанской ГРЭС была специально построена МГДЭС. Однако генератор так и не был запущен в эксплуатацию. С начала 1990-х годов работы были полностью свёрнуты, а МГД-электростанция, без МГД-генератора работающая как обычная тепловая электростанция, после нескольких преобразований в конце концов была присоединена к Рязанской ГРЭС.
В ходе геофизического эксперимента «Хибины» в середине 1970-х годов в СССР по электрозондированию земной коры использовался импульсный МГД-генератор с максимальной мощностью 100 МВт, силой тока 20 кА и временем работы около 10 с[1].
Мощность МГД-генератора пропорциональна проводимости рабочего тела, квадрату его скорости и квадрату напряжённости магнитного поля. Для газообразного рабочего тела в диапазоне температур 2000—3000 К проводимость пропорциональна температуре в 11-13-й степени и обратно пропорциональна корню квадратному из давления.
Скорости потока в МГД-генераторе могут быть в широком диапазоне — от дозвуковых до гиперзвуковых, свыше 1900 м/сек.
Индукция магнитного поля определяется конструкцией магнитов и ограничивается значениями около 2 Тл для магнитов со сталью и до 6—8 Тл для сверхпроводящих магнитных систем.
Достоинства:
Недостатки:
В сочетании с паросиловыми установками, МГД-генератор позволяет получить большие мощности в одном агрегате, до 500—1000 МВт.
Теоретически, существуют пять направлений промышленного применения МГД-генераторов:
Энергетические установки с МГД-генератором могут применяться также как резервные или аварийные источники энергии в энергосистемах, для бортовых систем питания космической техники, в качестве источников питания различных устройств, требующих больших мощностей на короткие промежутки времени (например, для питания электроподогревателей аэродинамических труб и т. п.).
Несмотря на заманчивые перспективы и бурное развитие исследований в области МГД-генераторов в 1970-е годы, устройства на их основе так и не нашли широкого промышленного применения. Камнем преткновения является отсутствие материалов для стенок генератора и электродов, способных работать при возникающих запредельных температурах достаточно долгое время[2].
Другой проблемой является то, что МГД-генераторы выдают только постоянный ток. Соответственно, необходимы мощные и экономичные инверторы[3].
В телевизионных учебных передачах по физике, выходящих в СССР в конце 1980-х годов, сообщалось, что в Рязанской области запущен и работает промышленный МГД-генератор, что не соответствовало действительности — он так и не заработал. Речь идёт о Рязанской ГРЭС-24. Разработка установки велась, но столкнулась с определёнными[какими?][уточнить] проблемами. В конечном итоге создание МГД-генератора отменили, а паровой котел установки был введён в эксплуатацию в 1984 году автономно[4]. В установке предусматривалась МГД-часть мощностью 500 МВт и следующая за ней газотурбинная надстройка мощностью 300—310 МВт[5]. Последняя впоследствии была доведена отдельно[4] и введена в эксплуатацию 1 июня 2010 года[6].
В XXI веке строятся и испытываются экспериментальные подводные лодки с магнитогидродинамической силовой установкой[7].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.