Remove ads
Из Википедии, свободной энциклопедии
Лоренцево сокращение, Фицджеральдово сокращение, также называемое релятивистским сокращением длины движущегося тела или масштаба, — предсказываемый релятивистской кинематикой эффект, заключающийся в том, что с точки зрения наблюдателя движущиеся относительно него предметы и пространство имеют меньшую длину (линейные размеры) в направлении движения, чем их собственная длина. Множитель, выражающий кажущееся сжатие размеров, тем сильнее отличается от 1, чем больше скорость движения предмета.
Эффект значим, только если скорость предмета по отношению к наблюдателю сравнима со скоростью света.
Пусть стержень покоится в инерциальной системе отсчёта K и расстояние между концами стержня, измеренное в К («собственная» длина стержня), равно l. Пусть далее стержень движется вдоль своей длины со скоростью v относительно некой другой (инерциальной) системы отсчёта K'. В таком случае расстояние l' между концами стержня, измеренное в системе отсчета K', составит
При этом расстояния поперёк движения одинаковы в обеих системах отсчета K и K'.
Величина γ, обратная множителю с корнем, называется также Лоренц-фактором. С её использованием эффект можно сформулировать и так: время пролёта стержня мимо фиксированной точки системы отсчёта K' составит
Сокращение длины может быть выведено из преобразований Лоренца несколькими способами:
Пусть в инерциальной системе отсчета К и обозначают концы движущегося объекта. Тогда его длина определяется через одновременное положение концов . Собственную длину объекта в К'-системе можно рассчитать через преобразования Лоренца. Преобразование временных координат из К в К' приводит к различающемуся времени. Но это не проблема, так как объект покоится в К'-системе, и не имеет значения, в какой момент времени произведены измерения. Поэтому достаточно сделать преобразования пространственных координат, что дает:[1]
Поскольку , то, положив и , собственная длина в К'-системе, получается
В соответствии с этим измеренная длина в К-системе получается уменьшенной
В соответствии с принципом относительности объекты, покоящиеся в К-системе, будут также уменьшены в К'-системе. Поменяв симметрично нештрихованные и штрихованные обозначения:
Тогда уменьшенная длина, измеряемая в К'-системе:
Если объект покоится в К-системе и известна его собственная длина, то одновременность измерений концов объекта в К'-системе необходимо рассчитать, потому что объект постоянно меняет свою позицию. В таком случае необходимо преобразовать и пространственные, и временные координаты:[2]
Так как и , получаемые результаты не одновременны:
Для получения одновременных положений концов необходимо вычесть из расстояние, пройденное вторым концом со скоростью в течение времени :
Таким образом, движущаяся длина в К'-системе уменьшилась. Точно так же можно рассчитать симметричный результат для объекта, покоящегося в К'-системе
Сокращение длин возникает из-за свойств псевдоевклидовой геометрии пространства Минковского, аналогичных удлинению сечения, например, цилиндра, когда оно проводится не строго поперёк оси, а косо. Говоря иначе, «один и тот же момент времени» с точки зрения системы отсчёта, где стержень движется, не будет являться одним и тем же моментом с точки зрения системы отсчёта, связанной со стержнем.[3] То есть процедура измерения расстояния в одной системе отсчёта с точки зрения любой другой системы отсчёта является не процедурой измерения чистого расстояния, когда положения, например, концов стержня засекаются в один и тот же момент времени, а смесью измерения пространственного расстояния и промежутка времени, которые вместе составляют инвариантный, то есть не зависящий от системы отсчёта, пространственно-временной интервал.
Этот раздел не завершён. |
В 1911 году Владимир Варичак[англ.] утверждал, что, согласно Лоренцу, сокращение длины воспринимается объективно, в то время как, по мнению Эйнштейна, это «всего лишь кажущееся субъективное явление, вызванное способом упорядочивания наших часов и измерением длин».[4][5] Эйнштейн опубликовал опровержение:
Автор необоснованно заявил о различии моих взглядов и взглядов Лоренца относительно физических фактов. Вопрос о том, действительно ли существует сокращение длины, только запутывает. Его «на самом деле» не существует, поскольку оно не существует для сопутствующего наблюдателя; хотя оно «действительно» существует, то есть в том смысле, что оно в принципе может быть продемонстрировано физическими средствами сторонним наблюдателем.[6]Альберт Эйнштейн, 1911
Эйнштейн также утверждал в этой статье, что сокращение длины — это не просто результат произвольных определений, касающихся способа упорядочивания часов и измерения длин. Он предложил следующий мысленный эксперимент: Пусть A'B' и A"B" будут концами двух стержней одинаковой длины L0, измеренных на x' и x" соответственно. Пусть они движутся в противоположных направлениях вдоль оси x*, рассматриваемой в состоянии покоя, с одинаковой по отношению к ней скоростью. Затем концевые точки A'A" встречаются в точке A*, а B'B" встречаются в точке B*. Эйнштейн показал, что длина A*B* короче, чем A'B 'или A''B'', что также можно продемонстрировать, остановив один из стержней по отношению к этой оси.[6]
Лоренцево сокращение лежит в основе таких эффектов, как парадокс Эренфеста и парадокс Белла, показывающих непригодность понятий классической механики к СТО. Они показывают невозможность, соответственно, раскрутить и придать ускорение гипотетическому «абсолютно твёрдому телу».
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.