Loading AI tools
Из Википедии, свободной энциклопедии
Критерий устойчивости Найквиста — Михайлова — один из способов судить об устойчивости замкнутой системы управления по амплитудно-фазовой частотной характеристике её разомкнутого состояния. Является одним из частотных критериев устойчивости. С помощью этого критерия оценить устойчивость весьма просто, без необходимости вычисления полюсов передаточной функции замкнутой системы.
Передаточная функция динамической системы может быть представлена в виде дроби
Устойчивость достигается тогда, когда все её полюсы находятся в левой полуплоскости . В правой полуплоскости их быть не должно. Если получена замыканием отрицательной обратной связью разомкнутой системы с передаточной функцией , тогда полюсы передаточной функции замкнутой системы являются нулями функции . Выражение называется характеристическим уравнением системы.
Из теории функций комплексного переменного известно, что контур , охватывающий на -плоскости некоторое число неаналитических точек, может быть отображён на другую комплексную плоскость (плоскость ) при помощи функции таким образом, что получившийся контур будет охватывать центр -плоскости раз, причём , где — число нулей, а — число полюсов функции . Положительным считается направление, совпадающее с направлением контура , а отрицательным — противоположное ему.
Сначала построим контур, охватывающий правую полуплоскость комплексной плоскости. Контур состоит из следующих участков:
Далее отображаем этот контур посредством передаточной функции разомкнутой системы , в результате чего получаем плоскость АФЧХ системы. Согласно принципу аргумента число оборотов по часовой стрелке вокруг начала координат должно быть равно количеству нулей функции минус количество полюсов в правой полуплоскости. Если рассматривать вместо начала координат точку , получим разницу между числом нулей и полюсов в правой полуплоскости для функции . Заметив, что функция имеет такие же полюса, что и функция , а полюса разомкнутой системы являются нулями замкнутой системы, сформулируем критерий Найквиста — Михайлова:
Пусть — замкнутый контур в комплексной плоскости, — число полюсов , охваченных контуром , а — число нулей , охваченных — то есть число полюсов , охваченных . Получившийся контур в -плоскости, должен для обеспечения устойчивости замкнутой системы охватывать (по часовой стрелке) точку раз, где .
В русскоязычной литературе, в основном, изданной в СССР, встречается иная формулировка критерия, называемого в этом случае критерием Михайлова (критерий устойчивости был предложен советским ученым А. В. Михайловым в 1936 году[1]):
Система порядка устойчива, если ее частотный годограф, начинаясь на положительной вещественной полуоси комплексной плоскости и вращаясь против часовой стрелки, последовательно проходит координатных квадрантов, нигде не обращаясь в 0.
Следствия критерия Найквиста — Михайлова:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.