Loading AI tools
повторяющееся изменение величины около определённого значения Из Википедии, свободной энциклопедии
Колеба́ния — повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются все углы его отклонения относительно вертикали; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.
Колебания почти всегда связаны с превращением энергии из одной формы в другую и обратно.
Колебания различной физической природы имеют много общих закономерностей и тесно связаны c волнами. Поэтому исследованиями этих закономерностей занимается теория колебаний и волн. Принципиальное отличие волн в том, что их распространение сопровождается переносом энергии.
Выделение разных видов колебаний зависит от подчёркиваемых свойств систем с колебательными процессами (осцилляторов).
Так, периодические колебания определены следующим образом:
Периодическими функциями называются [...] такие функции , для которых можно указать некоторую величину , так что
при любом значении аргумента .Андронов и соавт.[1]
Период колебаний и частота — обратные величины:
В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота (рад/с, Гц, с−1), показывающая число колебаний за единиц времени:
Гармонические колебания были известны с XVII века.
Термин «релаксационные колебания» был предложен в 1926 г. ван дер Полем.[A: 2][A: 3] Обосновывалось введение такого термина лишь тем обстоятельством, что указанному исследователю казались все подобные колебания связанными с наличием «времени релаксации» — то есть с концептом, который на тот исторический момент развития науки представлялся наиболее понятным и широко распространённым. Ключевым свойством колебаний нового типа, описанных рядом перечисленных выше исследователей, было то, что они существенно отличались от линейных, — что проявляло себя в первую очередь как отклонение от известной формулы Томсона. Тщательное историческое исследование показало[A: 4], что ван дер Поль в 1926 г. ещё не осознавал того обстоятельства, что открытое им физическое явление «релаксационные колебания» соответствует введённому Пуанкаре математическому понятию «предельный цикл», и понял он это лишь уже после вышедшей в 1929 г. публикации А. А. Андронова.
Иностранные исследователи признают[A: 4] тот факт, что среди советских учёных мировую известность приобрели ученики Л. И. Мандельштама, выпустившие в 1937 г. первую книгу[B: 1], в которой были обобщены современные сведения о линейных и нелинейных колебаниях. Однако советские учёные «не приняли в употребление термин „релаксационные колебания“, предложенный ван дер Полем. Они предпочитали термин „разрывные движения“, используемый Блонделем, в частности потому, что предполагалось описывать этих колебаний в терминах медленных и быстрых режимов. Этот подход стал зрелым только в контексте теории сингулярных возмущений»[A: 4].
Важным типом колебаний являются гармонические колебания — колебания, происходящие по закону синуса или косинуса. Как установил в 1822 году Фурье, любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в ряд Фурье. Среди слагаемых этой суммы существует гармоническое колебание с наименьшей частотой, которая называется основной частотой, а само это колебание — первой гармоникой или основным тоном, частоты же всех остальных слагаемых, гармонических колебаний, кратны основной частоте, и эти колебания называются высшими гармониками или обертонами — первым, вторым и т. д.[B: 2]
Указывается[A: 4], что формулировка, представленная Ван дер Полем: «медленная эволюция, сопровождаемая внезапным прыжком» (в оригинале: «slow evolution followed by a sudden jump»), — недостаточна, чтобы избежать неоднозначной интерпретации, причём на это обстоятельство указывали ещё современники ван дер Поля.
Тем не менее, похожим образом релаксационные колебания определяются и в более поздних работах. Например, Е. Ф. Мищенко и соавт.[2] определяют релаксационные колебания как такие «периодические движения» по замкнутой фазовой траектории, при которых «сравнительно медленные, плавные изменения фазового состояния чередуются с весьма быстрыми, скачкообразными». При этом далее указывается[3], что «сингулярно возмущённую систему, допускающую такое периодическое решение, называют релаксационной».
Рассматривались отдельно в классической коллективной монографии А. А. Андронова и соав.[4] под названием «разрывные колебания», более принятому в советской математической школе.
Позже сложилась в теорию сингулярных возмущений (см. напр.[B: 3]).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.