Квантовая гравитация

квант Из Википедии, свободной энциклопедии

Квантовая гравитация

Ква́нтовая гравита́ция — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия (и, в случае успеха, — объединение гравитации с остальными тремя фундаментальными взаимодействиями, описываемыми Стандартной моделью, то есть построение так называемой «теории всего»).

ThumbМезонМезонБарионНуклонКваркЛептонАдронАтомМолекулаФотонW- и Z-бозоныГлюонГравитонЭлектромагнитное взаимодействиеСлабое взаимодействиеСильное взаимодействиеГравитацияКвантовая электродинамикаКвантовая хромодинамикаКвантовая гравитацияЭлектрослабое взаимодействиеТеория великого объединенияТеория всегоЭлементарная частицаВещество
Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия. Элементарные частицы слева — фермионы, справа — бозоны. (Термины — гиперссылки на статьи Википедии)

Проблемы создания

Суммиров вкратце
Перспектива

Несмотря на активные исследования, теория квантовой гравитации пока не построена. Основная трудность в её построении заключается в том, что две физические теории, которые она пытается связать воедино, — квантовая механика и общая теория относительности (ОТО) — опираются на разные наборы принципов. Так, квантовая механика формулируется как теория, описывающая временну́ю эволюцию физических систем (например, атомов или элементарных частиц) на фоне внешнего пространства-времени. В ОТО внешнего пространства-времени нет — оно само является динамической переменной теории, зависящей от характеристик находящихся в нём классических систем.

При переходе к квантовой гравитации, как минимум, нужно заменить системы на квантовые (то есть произвести квантование), при этом правая часть уравнений Эйнштейна — тензор энергии-импульса материи — становится квантовым оператором (тензорной плотностью энергии-импульса элементарных частиц). Возникающая связь требует какого-то квантования геометрии самого пространства-времени, причём физический смысл такого квантования абсолютно неясен и сколь-либо успешная непротиворечивая попытка его проведения отсутствует[1][2]. О квантовании геометрии пространства-времени см. также в статье Планковская длина.

Даже попытка провести квантование линеаризованной классической теории гравитации (ОТО) наталкивается на многочисленные технические трудности — квантовая гравитация оказывается неперенормируемой теорией вследствие того, что гравитационная постоянная является размерной величиной[3][4]. А именно, в системе единиц гравитационная постоянная является размерной константой с размерностью обратного квадрата массы, как и фермиевская константа взаимодействия слабых токов , где  — масса протона[5].

Ситуация усугубляется тем, что прямые эксперименты в области квантовой гравитации, из-за слабости самих гравитационных взаимодействий пока недоступны современным технологиям.[6] В связи с этим в поиске правильной формулировки квантовой гравитации приходится пока опираться только на теоретические выкладки.

Предпринимаются попытки квантования гравитации на основе геометродинамического подхода и на основе метода функциональных интегралов[7].

Другие подходы к проблеме квантования гравитации предпринимаются в теориях супергравитации и дискретного пространства-времени[5].

Перспективные кандидаты

Суммиров вкратце
Перспектива

Два основных направления, пытающихся построить квантовую гравитацию, — это теория струн и петлевая квантовая гравитация.

В первой из них вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами.

Во втором подходе делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону; пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только начиная от планковского времени после Большого взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть дальше. Петлевая квантовая гравитация, возможно, позволит описать все частицы Стандартной модели.

Основной проблемой тут является выбор координат. Можно сформулировать и общую теорию относительности в бескоординатной форме (например, с помощью внешних форм), однако вычисления тензора Римана осуществляются только в конкретной метрике.

Ещё одной перспективной теорией является причинная динамическая триангуляция. В ней пространственно-временное многообразие строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

Другие подходы

Существуют бесчисленное количество подходов к квантовой гравитации. Подходы различаются в зависимости от характеристик, остающихся неизменными, и тех, которые меняются[8][9]. Примеры включают:

Экспериментальная проверка

Проводятся[когда?] первые опыты по выявлению квантовых свойств гравитации путём исследования гравитационного поля очень малых массивных тел, которые удаётся перевести в состояние квантовой суперпозиции[19].

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.