Антагонисти́ческая игра́ или игра́ с нулево́й су́ммой (англ. zero-sum game) — термин теории игр. Антагонистической игрой называется некооперативная игра, в которой сумма выигрышей и проигрышей всех игроков равна 0. Следовательно, это означает, что выигрыш одного обязательно представляет собой проигрыш для другого.

Формально антагонистическая игра может быть представлена тройкой <X, Y, F>, где X и Y — множества стратегий первого и второго игроков, соответственно; F — функция выигрыша первого игрока, ставящая в соответствие каждой паре стратегий (ситуации) (x,y), действительное число, соответствующее полезности первого игрока при реализации данной ситуации. Так как интересы игроков противоположны, функция F одновременно представляет и проигрыш второго игрока.

Исторически антагонистические игры являются первым классом математических моделей теории игр, при помощи которых описывались азартные игры. Считается, что благодаря этому предмету исследования теория игр и получила своё название. В настоящее время антагонистические игры рассматриваются как часть более широкого класса некооперативных игр.

Пример

Подробнее X \ Y, Орёл ...
X \ Y Орёл Решка
Орёл -1, 1 1, -1
Решка 1, -1 -1, 1
Закрыть

Простейшим примером антагонистической игры является игра «Орлянка». Первый игрок прячет монету орлом или решкой вверх, а второй пытается угадать, как она спрятана. Если он не угадывает — он платит первому одну денежную единицу, если угадывает — первый платит ему одну денежную единицу.

В данной игре каждый участник имеет две стратегии: «орёл» и «решка». Множество ситуаций в игре состоит из четырёх элементов. В строках таблицы указаны стратегии первого игрока х, в столбцах — стратегии второго игрока y. Для каждой из ситуаций указаны выигрыши первого и второго игроков.

В аналитическом виде функция выигрыша первого игрока имеет следующую форму:

где xX и yY — стратегии первого и второго игроков, соответственно.

Так как выигрыш первого игрока равен проигрышу второго, то .

Если результат полностью определяется игроком, совершившим последний ход (если правила хода идентичны для игроков), стратегия может быть найдена с помощью функции Гранди.

См. также

Литература

  • Петросян Л. А., Зенкевич Н.А., Семина Е.А. Теория игр: Учеб. пособие для ун-тов. М.: Высш. шк., Книжный дом «Университет», 1998. — С. 304. ISBN 5-06-001005-8, 5-8013-0007-4.
  • Васин А. А., Морозов В. В. Теория игр и модели математической экономики. М.: Макс-пресс, 2005. — 272 с. ISBN 5-317-01388-7.


Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.