Дважды стохастическая матрица

Из Википедии, свободной энциклопедии

Дважды стохастическая матрица — квадратная матрица с неотрицательными вещественными элементами, в которой все её строчные и столбцовые суммы равны 1, то есть:

.

Множество всех дважды стохастических матриц обозначается через .

Теорема Биркгофа: множество всех дважды стохастических матриц образует выпуклый многогранник, вершины которого — матрицы перестановки. Иначе говоря, если , то , где  — матрицы перестановки, а  — неотрицательные числа, [1].

Любая дважды стохастическая матрица порядка является выпуклой линейной комбинацией не более чем матриц перестановок[2].

Для и , таких, что

при всех и
,

существует такая дважды стохастическая матрица , что [2].

Перманент дважды стохастической -матрицы не менее, чем  — гипотеза ван дер Вардена,[3] доказанная в 1980 году Г. П. Егорычевым[4] и независимо Д. Фаликманом[5] (работа представлена к публикации в 1979 году); за эти результаты оба учёных удостоены в 1982 году премии Фалкерсона. [3]

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.