Loading AI tools
Из Википедии, свободной энциклопедии
Генети́ческий алгори́тм (англ. genetic algorithm) — эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе. Является разновидностью эволюционных вычислений, с помощью которых решаются оптимизационные задачи с использованием методов естественной эволюции, таких как наследование, мутации, отбор и кроссинговер. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.
Первые работы по имитационному моделированию эволюции были проведены в 1954 году Нильсом Баричелли на компьютере, установленном в Институте перспективных исследований Принстонского университета[1][2], опубликованная в том же году работа привлекла широкое внимание. С 1957 года[3] австралийский генетик Алекс Фразер[англ.] опубликовал серию работ по имитационному моделированию искусственного отбора среди организмов с множественным контролем измеримых характеристик. Положенное начало позволило реализовать имитационные модели эволюционных процессов по методам, описанным в книгах Фразера и Барнелла (1970)[4] и Кросби (1973)[5]. Имитационные модели Фразера включали все важнейшие элементы современных генетических алгоритмов. Вдобавок к этому, Ханс-Йоахим Бремерман[англ.] в 1960-х годах опубликовал серию работ, которые также принимали подход использования популяции решений, подвергаемой рекомбинации, мутации и отбору, в проблемах оптимизации. Исследования Бремермана также включали элементы современных генетических алгоритмов[6]. Среди прочих ранних исследователей — Ричард Фридберг[англ.], Джордж Фридман и Майкл Конрад[англ.]. Множество ранних работ были переизданы Давидом Фогелем (1998)[7].
Хотя Барричелли[англ.] в работе 1963 года имитировал способности машины играть в простую игру[8], искусственная эволюция стала общепризнанным методом оптимизации после работы Инго Рехенберга[англ.] и Ханса-Пауля Швефеля[англ.] в 1960-х и начале 1970-х годов двадцатого века — группа Рехенберга смогла решить сложные инженерные проблемы согласно стратегиям эволюции.[9][10][11][12] Другим подходом была техника эволюционного программирования Лоренса Джей Фогеля[англ.], которая была предложена для создания искусственного интеллекта. Эволюционное программирование первоначально использовало конечные автоматы для предсказания обстоятельств и разнообразие и отбор для оптимизации логики предсказания. Генетические алгоритмы стали особенно популярны благодаря работе Джона Холланда в начале 70-х годов и его книге «Адаптация в естественных и искусственных системах» (1975)[13]. Исследование Фогеля основывалось на экспериментах Холланда с клеточными автоматами и его (Холланда) трудах, написанных в университете Мичигана. Холланд ввел формализованный подход для предсказывания качества следующего поколения, известный как Теорема схем. Исследования в области генетических алгоритмов оставались в основном теоретическими до середины 80-х годов, когда была, наконец, проведена Первая международная конференция по генетическим алгоритмам в Питтсбурге, Пенсильвания (США).
С ростом исследовательского интереса существенно выросла и вычислительная мощь настольных компьютеров, это позволило использовать новую вычислительную технику на практике. В конце 80-х, компания General Electric начала продажу первого в мире продукта, работавшего с использованием генетического алгоритма. Им стал набор промышленных вычислительных средств. В 1989, другая компания Axcelis, Inc. выпустила Evolver — первый в мире коммерческий продукт на генетическом алгоритме для настольных компьютеров. Журналист The New York Times в технологической сфере Джон Маркофф писал[14] об Evolver в 1990 году.
Задача формализуется таким образом, чтобы её решение могло быть закодировано в виде вектора («генотипа») генов, где каждый ген может быть битом, числом или неким другим объектом. В классических реализациях генетического алгоритма (ГА) предполагается, что генотип имеет фиксированную длину. Однако существуют вариации ГА, свободные от этого ограничения.
Некоторым, обычно случайным, образом создаётся множество генотипов начальной популяции. Они оцениваются с использованием «функции приспособленности», в результате чего с каждым генотипом ассоциируется определённое значение («приспособленность»), которое определяет насколько хорошо фенотип, им описываемый, решает поставленную задачу.
При выборе «функции приспособленности» (или fitness function в англоязычной литературе) важно следить, чтобы её «рельеф» был «гладким».
Из полученного множества решений («поколения») с учётом значения «приспособленности» выбираются решения (обычно лучшие особи имеют большую вероятность быть выбранными), к которым применяются «генетические операторы» (в большинстве случаев «скрещивание» — crossover и «мутация» — mutation), результатом чего является получение новых решений. Для них также вычисляется значение приспособленности, и затем производится отбор («селекция») лучших решений в следующее поколение.
Этот набор действий повторяется итеративно, так моделируется «эволюционный процесс», продолжающийся несколько жизненных циклов (поколений), пока не будет выполнен критерий остановки алгоритма. Таким критерием может быть:
Генетические алгоритмы служат, главным образом, для поиска решений в многомерных пространствах поиска.
Таким образом, можно выделить следующие этапы генетического алгоритма:
Перед первым шагом нужно случайным образом создать начальную популяцию; даже если она окажется совершенно неконкурентоспособной, вероятно, что генетический алгоритм всё равно достаточно быстро переведёт её в жизнеспособную популяцию. Таким образом, на первом шаге можно особенно не стараться сделать слишком уж приспособленных особей, достаточно, чтобы они соответствовали формату особей популяции, и на них можно было подсчитать функцию приспособленности (Fitness). Итогом первого шага является популяция H, состоящая из N особей.
На этапе отбора нужно из всей популяции выбрать определённую её долю, которая останется «в живых» на этом этапе эволюции. Есть разные способы проводить отбор. Вероятность выживания особи h должна зависеть от значения функции приспособленности Fitness(h). Сама доля выживших s обычно является параметром генетического алгоритма, и её просто задают заранее. По итогам отбора из N особей популяции H должны остаться sN особей, которые войдут в итоговую популяцию H'. Остальные особи погибают.
Размножение в генетических алгоритмах требует для производства потомка нескольких родителей, обычно двух.
Можно выделить несколько операторов выбора родителей:
Инбридинг и аутбридинг бывают в двух формах: фенотипной и генотипной. В случае фенотипной формы похожесть измеряется в зависимости от значения функции приспособленности (чем ближе значения целевой функции, тем особи более похожи), а в случае генотипной формы похожесть измеряется в зависимости от представления генотипа (чем меньше отличий между генотипами особей, тем особи похожее).
Размножение в разных алгоритмах определяется по-разному — оно, конечно, зависит от представления данных. Главное требование к размножению — чтобы потомок или потомки имели возможность унаследовать черты обоих родителей, «смешав» их каким-либо способом.
Почему особи для размножения обычно выбираются из всей популяции H, а не из выживших на первом шаге элементов H' (хотя последний вариант тоже имеет право на существование)? Дело в том, что главный недостаток многих генетических алгоритмов — отсутствие разнообразия (diversity) в особях. Достаточно быстро выделяется один-единственный генотип, который представляет собой локальный максимум, а затем все элементы популяции проигрывают ему отбор, и вся популяция «забивается» копиями этой особи. Есть разные способы борьбы с таким нежелательным эффектом; один из них — выбор для размножения не самых приспособленных, но вообще всех особей. Однако такой подход вынуждает хранить всех существовавших ранее особей, что увеличивает вычислительную сложность задачи. Поэтому часто применяют методы отбора особей для скрещивания таким образом, чтобы «размножались» не только самые приспособленные, но и другие особи, обладающие плохой приспособленностью. При таком подходе для разнообразия генотипа возрастает роль мутаций.
К мутациям относится все то же самое, что и к размножению: есть некоторая доля мутантов m, являющаяся параметром генетического алгоритма, и на шаге мутаций нужно выбрать mN особей, а затем изменить их в соответствии с заранее определёнными операциями мутации.
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Существует несколько поводов для критики насчёт использования генетического алгоритма по сравнению с другими методами оптимизации:
Имеется много скептиков относительно целесообразности применения генетических алгоритмов. Например, Стивен С. Скиена, профессор кафедры вычислительной техники университета Стоуни—Брук, известный исследователь алгоритмов, лауреат премии института IEEE, пишет[17]:
Я лично никогда не сталкивался ни с одной задачей, для решения которой генетические алгоритмы оказались бы самым подходящим средством. Более того, я никогда не встречал никаких результатов вычислений, полученных посредством генетических алгоритмов, которые производили бы на меня положительное впечатление.
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Генетические алгоритмы применяются для решения следующих задач:
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Поиск в одномерном пространстве, без скрещивания.
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <numeric>
int main()
{
srand((unsigned int)time(NULL));
const size_t N = 1000;
int a[N] = { 0 };
for ( ; ; )
{
//мутация в случайную сторону каждого элемента:
for (size_t i = 0; i < N; ++i)
a[i] += ((rand() % 2 == 1) ? 1 : -1);
//теперь выбираем лучших, отсортировав по возрастанию
std::sort(a, a + N);
//и тогда лучшие окажутся во второй половине массива.
//скопируем лучших в первую половину, куда они оставили потомство, а первые умерли:
std::copy(a + N / 2, a + N, a);
//теперь посмотрим на среднее состояние популяции. Как видим, оно всё лучше и лучше.
std::cout << std::accumulate(a, a + N, 0) / N << std::endl;
}
}
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.