Гамма-функция

математическая функция — обобщение факториала Из Википедии, свободной энциклопедии

Гамма-функция

Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру[1].

Thumb
График гамма-функции действительной переменной

Гамма-функция чрезвычайно широко применяется в науке. Среди основных областей её применения — математический анализ, теория вероятностей, комбинаторика, статистика, атомная физика, астрофизика, гидродинамика, сейсмология и экономика. В частности, гамма-функция используется для обобщения понятия факториала на множества действительных и комплексных значений аргумента и расширения понятия производной на дробные значения.

Определения

Суммиров вкратце
Перспектива

Интегральное определение

Если вещественная часть комплексного числа положительна, то гамма-функция определяется через абсолютно сходящийся интеграл

Это определение было получено Лежандром из оригинального определения Эйлера (1730 г.)

через замену переменной , и на сегодняшний день именно определение Лежандра известно как классическое определение гамма-функции. Интегрируя по частям классическое определение, легко видеть, что .

Для приближённого вычисления значений гамма-функции удобнее третья формула, также полученная из определения Эйлера путём применения равенства и замены переменной :

.

Интеграл в этой формуле сходится при , хотя она обычно используется для положительных вещественных значений аргумента (предпочтительные значения — вблизи 1). В случае вещественного аргумента подынтегральная функция имеет единственную особую точку — устранимый разрыв при , и если доопределить её в этой точке значением , она станет непрерывной на всём отрезке . Таким образом, интеграл является собственным, что упрощает численное интегрирование.

Существует непосредственное аналитическое продолжение исходной формулы на всю комплексную плоскость, кроме целых чисел, называемое интегралом Римана — Ханкеля:

.

Здесь контур  — любой контур на комплексной плоскости, обходящий точку против часовой стрелки, концы которого уходят на бесконечность вдоль положительной вещественной оси.

Последующие выражения служат альтернативными определениями гамма-функции.

Определение по Гауссу верно для всех комплексных , за исключением 0 и отрицательных целых чисел:

.

Определение по Эйлеру

.

Определение по Вейерштрассу:

.

где  — постоянная Эйлера — Маскерони[1].

Иногда используется альтернативная, так называемая пи-функция, которая является обобщением факториала и связана с гамма-функцией соотношением . Именно этой функцией (а не -функцией) пользовались Гаусс, Риман, и многие другие немецкие математики XIX века.

Свойства

Суммиров вкратце
Перспектива
Thumb
График модуля гамма-функции на комплексной плоскости.
Thumb
Амплитуда и фаза факториала комплексного аргумента.

Для любого целого неотрицательного n верно:

.

Основное свойство гамма-функции — это её рекуррентное уравнение:

,

которое при фиксированном начальном условии единственным образом определяет логарифмически выпуклое решение, то есть саму гамма-функцию (Теорема Бора — Моллерупа)[2].

Для гамма-функции справедлива формула дополнения Эйлера:

.

Также справедлива и формула умножения Гаусса:

.

Частный случай этой формулы при n=2 был получен Лежандром:

.

Гамма-функция не имеет нулей на всей комплексной плоскости. является мероморфной на комплексной плоскости и имеющей простые полюсы в точках [1].

Гамма-функция имеет полюс первого порядка в для любого натурального и нуля; вычет в этой точке задаётся так:

.

Полезное свойство, которое может быть получено из предельного определения:

.

Гамма-функция дифференцируема бесконечное число раз, и , где , часто называют «пси-функцией» или дигамма-функцией. Гамма-функция и бета-функция связаны следующим соотношением:

.

По теореме Бора — Моллерупа гамма-функция является единственной функцией, обладающей в области одновременно тремя свойствами:

  • ,
  • для ,
  • является логарифмически выпуклой функцией (то есть  — выпукла).

Логарифм гамма-функции

Суммиров вкратце
Перспектива

По целому ряду причин наряду с гамма-функцией часто рассматривают и логарифм гамма-функции — первообразную дигамма-функции. Для него справедливы следующие интегральные представления:

и

данные Жаком Бине в 1839 году (эти формулы ещё часто называют первой и второй формулой Бине соответственно для логарифма гамма-функции)[3]. Несколько отличные интегральные формулы для логарифма гамма-функции также появлялись в работах Мальмстена, Лерха и некоторых других. Так, Мальмстен получил формулу, схожую с первой формулой Бине[3]:

а Лерх показывает, что все интегралы вида:

также сводятся к логарифмам гамма-функции. В частности, формула, аналогичная второй формуле Бине с «сопряжённым» знаменателем, имеет следующий вид:

(см. упр. 40 в[4])

Кроме того, Мальмстен также получил ряд интегральных формул для логарифма гамма-функции, содержащих гиперболические функции с логарифмом в подынтегральном выражении (или, что то же, логарифм логарифма с полиномами). В частности,

(см. упр. 2, 29-h, 30 в[4])

Ярослав Благушин показал, что при рациональном аргументе , где и целые положительные числа, такие, что не превосходит , справедливо следующее представление:

(см. приложение C[5], а также упр. 60 и 58[4])

Более того, и в более общих случаях интегралы, содержащие гиперболические функции с логарифмом (или арктангенсом) в подынтегральном выражении, часто сводятся к логарифмам гамма-функции и её производным, в том числе и комплексного аргумента, см. напр. упр. 4-b, 7-а и 13-b в[4].

Логарифм гамма-функции также тесно связан с аналитическим продолжением обобщённой дзета-функции

Это важнейшее взаимоотношение, выведенное Лерхом, позволяет получить большое количество интегральных представлений для логарифма гамма-функции через известные формулы для обобщённой дзета-функции.

Ряд Фурье для логарифма гамма-функции имеет следующий вид

Эта формула обычно приписывается Эрнсту Куммеру, который её вывел в 1847 г. (в авторитетной литературе[3][6][7] этот ряд даже называется рядом Куммера для логарифма гамма-функции). Однако недавно было открыто, что эта формула была получена ещё в 1842 г. Карлом Мальмстеном (см. Ярослав Благушин[4][8]).

Помимо разложения в ряд Фурье, существуют и другие разложения в ряды. Одно из самых известных это ряд Стирлинга

В его стандартной вариации

где коэффициенты означают числа Бернулли.

Из определения гамма-функции по Вейерштрассу следует ещё одно важное представление рядом[9]

.

Частные значения

Суммиров вкратце
Перспектива

Гамма-функция целого и полуцелого аргументов выражается через элементарные функции. В частности

.
.
.
.
.
.

Поиск значения гамма-функции в точках 1/4 и 1/3 являлся объектом подробных изысканий Эйлера, Гаусса и Лежандра, однако им не удалось подсчитать эти значения в замкнутом виде[1].

Существуют следующие представления в незамкнутом виде для :

где AGM — функция арифметико-геометрического среднего, G — постоянная Каталана и A — постоянная Глейшера — Кинкелина.

Обобщения

Суммиров вкратце
Перспектива

В классическом интегральном определении гамма-функции пределы интегрирования фиксированы. Рассматривают также неполную гамма-функцию, определяемую аналогичным интегралом с переменным верхним либо нижним пределом интегрирования. Различают верхнюю неполную гамма-функцию, часто обозначаемую как гамма-функцию от двух аргументов:

и нижнюю неполную гамма-функцию, аналогично обозначаемую строчной буквой «гамма»:

.

Иногда неполную гамма-функцию определяют как[10]:

.

Вычисление интегралов

Суммиров вкратце
Перспектива

Важным применением Гамма функции служит сведение к ней интегралов следующего вида, где  — постоянные параметры

В частности, для широко встречающихся в приложениях физики интегралов Гауссова типа:

и эйлеровых интегралов:


См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.