Remove ads
объект, для которого нарушена связь между энергией и импульсом Из Википедии, свободной энциклопедии
Виртуа́льная части́ца — объект, который характеризуется почти всеми квантовыми числами, присущими одной из реальных элементарных частиц, но для которого нарушена свойственная последней связь между энергией и импульсом частицы. Понятие о виртуальных частицах возникло в квантовой теории поля. Такие частицы, родившись, не могут «улететь на бесконечность», они обязаны либо поглотиться какой-либо частицей, либо распасться на реальные частицы. Известные в физике фундаментальные взаимодействия протекают в форме обмена виртуальными частицами.
В квантовой теории поля понятия виртуальных частиц и виртуальных процессов занимают центральное место. Все взаимодействия частиц и их превращения в другие частицы в квантовой теории поля принято рассматривать как процессы, обязательно сопровождающиеся рождением и поглощением виртуальных частиц свободными реальными частицами[1]. Это — крайне удобный язык для описания взаимодействия. В частности, громоздкость вычисления процессов резко снижается, если предварительно составить правила рождения, уничтожения и распространения этих виртуальных частиц (правила Фейнмана) и изобразить процесс графически, с помощью фейнмановских диаграмм.
Разделение частиц на реальные и виртуальные имеет точный смысл лишь в отсутствии сильного внешнего поля и лишено однозначности в областях пространства-времени, где внешнее поле является сильным[2].
Основное и определяющее отличие виртуальной частицы от реальной — это нарушение известного из специальной теории относительности соотношения, которое связывает энергию и импульс реальной частицы:
здесь — модуль импульса, — масса частицы, — скорость света в вакууме. Для виртуальной частицы данное соотношение перестаёт быть справедливым[3]. Такие частицы могут существовать лишь очень короткое время и не могут быть зарегистрированы классическими измерительными приборами — например, счётчиками элементарных частиц[4].
Применительно к фотонам отличие виртуальных от реальных фотонов состоит ещё и в том, что для реального фотона проекция его спи́на на направление движения может принимать только значения (в релятивистских единицах), а для виртуального фотона возможно также значение [5].
Потребность в понятии виртуальных частиц возникает вследствие того, что, согласно принципу корпускулярно-волнового дуализма и принципу близкодействия, любое взаимодействие между элементарными частицами заключается в обмене квантами поля, обеспечивающего это взаимодействие. Так, электромагнитное взаимодействие электрона и протона в атоме водорода заключается в обмене фотонами между электроном и протоном. Но свободный электрон не может ни испустить, ни поглотить фотон. Причина — в том, что в системе отсчёта, в которой электрон покоился до испускания фотона, перед испусканием последнего энергия электрона равна , а после испускания энергия системы из электрона и фотона даётся выражением
подобный процесс запрещён законом сохранения энергии. Поэтому считают, что при обмене виртуальными фотонами последние переносят импульс, но не переносят энергию.
Иногда, в целях наглядности, концепцию «виртуальных частиц» поясняют несколько иначе. А именно, говорят, что в процессе взаимодействия закон сохранения энергии выполняется с некоторой погрешностью. Это не противоречит квантовой механике: согласно соотношению неопределённостей, событие, длящееся конечный промежуток времени, не позволяет определить энергию с точностью выше некоторого предела. Грубо говоря, промежуточные частицы «берут энергию взаймы» на некоторое небольшое время. В этом случае в процессе взаимодействия могут рождаться и исчезать обычные частицы, только с небольшим нарушением закона сохранения энергии.
За меру виртуальности частицы принимают релятивистски-инвариантную величину причём может принимать как положительные, так и отрицательные значения. Область значений и , при которых виртуальность равна нулю, называют массовой поверхностью (или массовой оболочкой) частицы.
Таким образом, вектор энергии-импульса виртуальной частицы может быть пространственноподобным. Поэтому один и тот же процесс с участием виртуальной частицы для наблюдателей в разных системах отсчёта может выглядеть по-разному: с точки зрения одного наблюдателя процесс может быть испусканием виртуальной частицы, а с точки зрения другого наблюдателя этот же процесс будет поглощением виртуальной античастицы[6].
Для виртуальных частиц лишено смысла понятие классической траектории. Они поглощаются прежде, чем сместятся на расстояние, превышающее неопределённость их положения[7]. Аналогом процессов испускания и поглощения виртуальных частиц является процесс проникновения света в плотную среду при полном внутреннем отражении в классической оптике[7]. Число виртуальных частиц не является лоренц-инвариантным за счёт того, что они исчезают в одной точке и одновременно появляются в другой[7].
Скорость виртуальной частицы не имеет непосредственного физического смысла. Это следует из того, что скорость частицы определяется через её импульс , энергию и скорость света соотношением [8]. Например, для импульса и энергии виртуальных фотонов, которыми обмениваются протон и электрон в атоме водорода, имеем: При подстановке в формулу этих значений для скорости получается бесконечно большая величина.
Масса виртуальной частицы также не имеет непосредственного физического смысла. Это следует из соотношения между массой , энергией , импульсом и скоростью света [9]. Например, для виртуальных фотонов, которыми обмениваются протон и электрон в атоме водорода, значения и таковы: При подстановке в формулу этих значений масса частицы оказывается мнимой.
Процесс с участием виртуальных частиц называется виртуальным процессом. В виртуальных процессах действуют ограничения, связанные с сохранением электрического заряда, спина, странности, барионного, лептонного и других зарядов, но не действуют ограничения по энергии и импульсу[10][1]. Для описания виртуальных процессов применяется метод диаграмм Фейнмана[11]. За очень редкими исключениями, внутренние линии на диаграммах Фейнмана всегда относятся к виртуальным частицам[12].
Виртуальная частица может возникнуть не только в процессе обмена между реальными частицами, но и в процессе поглощения одной реальной частицы другой реальной частицей. Эффект Комптона объясняется поглощением реального фотона реальным электроном с образованием виртуального электрона и последующим распадом виртуального электрона на реальные электрон и фотон, имеющие другие направления движения и энергии[4].
Если масса виртуальной частицы
отличается на от массы свободной частицы: , то, согласно соотношениям неопределённости между временем и энергией[13], эта виртуальная частица может существовать лишь в течение промежутка времени За это время она может пролететь расстояние Таким образом, чем больше виртуальность частицы, тем более короткое время происходит виртуальный процесс и на более малых расстояниях[14].
При обмене элементарных частиц виртуальным квантом поля с массой неопределённость энергии промежуточного виртуального состояния даётся неравенством Расстояние пройденное квантом, связано с временем жизни виртуального состояния соотношением Соотношение неопределённостей между временем жизни виртуального состояния и неопределённостью его энергии выглядит как Используя эти три формулы, можно найти зависимость расстояния, пройденного виртуальным квантом, от его массы:
Отсюда следует, что расстояние виртуального взаимодействия не превышает комптоновскую длину волны кванта — переносчика взаимодействия[15].
У полей с квантами-переносчиками, имеющими нулевую массу — таких как электромагнитное и, предположительно, гравитационное взаимодействие, — комптоновская длина волны кванта-переносчика, а следовательно, и радиус действия, не ограничены[16]. Напротив, у полей с квантами-переносчиками, имеющими ненулевую массу — таких как слабое взаимодействие, сильное взаимодействие[17], — комптоновская длина волны кванта-переносчика, а следовательно, и радиус действия, ограничены[18].
Часто наличием виртуальных частиц объясняются следующие эффекты:
Являются ли виртуальные частицы и процессы реальными или представляют собой удобный метод математического описания реальности?
На этот вопрос есть два противоположных ответа.
Один из ответов на этот вопрос утверждает, что виртуальные частицы — это в большей степени математическое явление, чем физическая реальность. Действительно, в квантовой теории поля в точных выражениях для процессов взаимодействия реальных частиц никакие виртуальные частицы не фигурируют. Если же, однако, попытаться упростить точное выражение в рамках теории возмущений, разложив его в ряд по константе взаимодействия (малому параметру теории), то возникает бесконечный набор слагаемых. Каждый из членов этого ряда выглядит так, словно в процессе взаимодействия порождаются и исчезают объекты, обладающие квантовыми числами реальных частиц. Однако эти объекты распространяются в пространстве по закону, отличному от реальных частиц, и поэтому если их трактовать как испускание и поглощение частицы, то придётся принять, что для них не выполняется связь между энергией и импульсом. Таким образом, виртуальные частицы появляются только тогда, когда мы определённым образом упрощаем исходное выражение. Понятие о виртуальных частицах возникло не на основе опытных фактов, а выведено из математического аппарата квантовой физики. Следовательно, это чисто умозрительное понятие для математических вычислений[24].
Виртуальные процессы происходят в промежутки времени порядка сек, а такие процессы в силу соотношения неопределённости для энергии и времени принципиально не могут наблюдаться. Таким образом, виртуальные частицы и процессы «ненаблюдаемы» и физической реальности не имеют[24].
Виртуальные частицы наделены свойствами, не имеющими физического смысла, такими как отрицательная и мнимая масса[24].
Виртуальные процессы совершаются с нарушением законов сохранения и потому не могут быть описаны классической физикой, так как всякий реальный процесс в классической физике происходит с соблюдением законов сохранения[24].
Сторонники другой точки зрения утверждают, что в понятии виртуальных частиц и виртуальных процессов имеется объективное содержание, отражающее явления природы.
Невозможность наблюдать виртуальные частицы в измерительных приборах не опровергает их объективного существования. Можно создавать виртуальные частицы, использовать их для воздействия на другие частицы, воздействовать на них и превращать в действительные частицы[25].
Имеется ряд физических доказательств объективного существования виртуальных частиц[26].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.