Loading AI tools
Из Википедии, свободной энциклопедии
Шестиугольная призма — призма с шестиугольным основанием. У этого многогранника 8 граней, 18 рёбер и 12 вершин[1].
До заточки многие карандаши имеют форму длинной шестиугольной призмы[2].
Если все боковые грани одинаковые, шестиугольная призма является полуправильным многогранником, более обще, однородным многогранником и четвёртой призмой в бесконечном множестве призм, образованных прямоугольными боковыми сторонами и двумя правильными основаниями. Призму можно рассматривать как усечённый[англ.] шестигранный осоэдр, представленный символом Шлефли t{2,6}. С другой стороны, его можно рассматривать как прямое произведение правильного шестиугольника на отрезок, которое представляется как {6}×{}. Двойственным многогранником шестиугольной призмы является шестиугольная бипирамида[англ.].
Группой симметрии прямой шестиугольной призмы является D6h с порядком 24, а группой вращений является D6 с порядком 12.
Как и у большинства призм, объём правильной шестигранной призмы можно найти умножением площади основания (с длиной стороны ) на высоту , что даёт формулу[3]:
Топология однородной шестиугольной призмы могут иметь геометрические вариации с низкой симметрией:
Симметрия | D6h, [2,6], (*622) | C6v, [6], (*66) | D3h, [2,3], (*322) | D3d, [2+,6], (2*3) | |
---|---|---|---|---|---|
Конструкция | {6}×{}, | t{3}×{}, | s2{2,6}, | ||
Рисунок | |||||
Нарушение |
Шестигранная призма присутствует как ячейка в четырёх призматических однородных выпуклых сотах[англ.] в трёхмерном пространстве:
Шестиугольные призматические соты[1] |
Треугольно-шестиугольные призматические соты[англ.] |
Усечённые треугольные призматические соты[англ.] |
Ромбо-треугольно-шестиугольные призматические соты[англ.] |
Шестигранные призмы существуют также в качестве трёхмерных граней четырёхмерных однородных многогранников[англ.]:
Усечённая тетраэдральная призма[англ.] |
Усечённая октаэдральная призма[англ.] |
Усечённая кубоктаэдрическая призма[англ.] |
Усечённая икосаэдрическая призма[англ.] |
Усечённая икосододекаэдрическая призма[англ.] |
Усечённая внутрь 5-ячейка[англ.] |
Рёберно усечённая 5-ячейка[англ.] |
Усечённая внутрь 16-ячейка[англ.] |
Рёберно усечённый гиперкуб[англ.] | |
Усечённая внутрь 24-ячейка[англ.] |
Рёберно усечённая 24-ячейка[англ.] |
Усечённая внутрь 600-ячейка[англ.] |
Рёберно усечённая 120-ячейка[англ.] | |
Этот многогранник можно считать членом последовательности однородных многогранников с угловой фигурой (4.6.2p) и диаграммой Коксетера — Дынкина . Для p < 6 членами последовательности являются усечённые во всех углах многогранники (зоноэдры), и они показаны ниже как сферические мозаики. Для p > 6 они являются мозаиками гиперболической плоскости начиная с усечённой трисемиугольной мозаики[англ.].
Симметрия *n32[англ.] n,3[англ.] |
Сферическая | Евклидова | Компактная гиперболическая | Паракомп. | Некомпактная гиперболическая | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
*232 [2,3] |
*332 [3,3] |
*432 [4,3] |
*532 [5,3] |
*632 [6,3] |
*732 [7,3] |
*832 [8,3] |
*∞32 [∞,3] |
[12i,3] |
[9i,3] |
[6i,3] |
[3i,3] | |
Фигуры | ||||||||||||
Конфигурация | 4.6.4 | 4.6.6 | 4.6.8 | 4.6.10 | 4.6.12[англ.] | 4.6.14[англ.] | 4.6.16[англ.] | 4.6.∞[англ.] | 4.6.24i | 4.6.18i | 4.6.12i | 4.6.6i |
Двойственная | ||||||||||||
Конфигурация грани | V4.6.4[англ.] | V4.6.6 | V4.6.8[англ.] | V4.6.10 | V4.6.12[англ.] | V4.6.14[англ.] | V4.6.16[англ.] | V4.6.∞ | V4.6.24i | V4.6.18i | V4.6.12i | V4.6.6i |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.