Loading AI tools
сегмент плоской кривой Из Википедии, свободной энциклопедии
Сегмент плоской кривой — плоская (обычно выпуклая) фигура, заключённая между кривой и её хордой[1].
Наиболее простой и распространённый пример сегмента плоской кривой: сегмент круга.
Основные характеристики сегмента кривой — его ширина, высота, площадь и длина границы.
Длина хорды сегмента круга радиуса и высоты вычисляется по теореме Пифагора:
Площадь сегмента круга радиуса опирающегося на центральный угол (в радианах)[2]:
Архимед в III веке до н. э. доказал, что площадь сегмента параболы, отсекаемого от неё прямой, составляет 4/3 от площади вписанного в этот сегмент треугольника (см. рисунок).
Пусть эллипс задан каноническим уравнением:
Площадь сегмента между дугой, выпуклой влево, и вертикальной хордой, проходящей через точку с абсциссой можно определить по формуле[3]:
Задача нахождения площади и длины дуги произвольного сегмента требует применения методов интегрального исчисления, которое исторически было создано именно для этой цели.
Для вычисления площади сегмента чаще всего удобно выбрать соответствующую хорду кривой в качестве оси абсцисс. Тогда площадь сегмента, то есть площадь под кривой , пересекающей ось абсцисс в точках a и b, равна:
Например, площадь под первой аркой синусоиды вычисляется как интеграл:
Другой пример: площадь сегмента (арки) циклоиды, порождённой кругом радиуса равна то есть втрое больше площади порождающего круга[4].
Длина произвольной кривой, в том числе дуги сегмента, вычисляется по формуле
Например, для вычисления длины первой арки синусоиды необходимо вычислить нормальный эллиптический интеграл Лежандра 2-го рода, который не берётся явно. Поэтому для вычисления подобных интегралов сегодня обычно сразу используют численное интегрирование.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.