Модулярная функция — мероморфная функция, определённая на верхней комплексной полуплоскости (то есть на множестве ), являющаяся инвариантной относительно превращений модулярной группы или некоторой её подгруппы и удовлетворяющая условиям голоморфности в параболических точках. Модулярные функции и обобщающие их модулярные формы[⇨] широко используются в теории чисел, а также в алгебраической топологии и теории струн.

Формально, модулярной функцией называется мероморфная функция, удовлетворяющая условию:

для каждой матрицы:

,

принадлежащей модулярной группе .

Модулярная форма

Модулярной формой веса для группы называется голоморфная функция , удовлетворяющая условию:

для любых и

и голоморфная во всех параболических точках[1][2].

Пусть  — верхняя комплексная полуплоскость: . Группа матриц для натурального числа определяется как:

.

Группа действует на с помощью дробно-линейных преобразований где и .[3]

Свойства модулярных форм

Модулярные формы нечётного веса равны нулю. Модулярной формой веса является (при ) ряд Эйзенштейна:

,

где .

Пусть

— модулярные инварианты,  — модулярный дискриминант. Определив следующим образом основной модулярный инвариант (j-инвариант):

,

выполняются равенства:

,
.

Также данные функции удовлетворяют соответствующие свойства голоморфности. То есть  — модулярная форма веса 4,  — модулярная форма веса 12. Соответственно  — модулярная форма веса 12, а  — модулярная функция. Данные функции имеют важное применение в теории эллиптических функций и эллиптических кривых.

Примечания

Литература

Ссылки

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.