Матрица расстояний — это квадратная матрица типа «объект-объект» (порядка n), содержащая в качестве элементов расстояния между объектами в метрическом пространстве.
Свойства матрицы являются отражением свойств самих расстояний[1]:
симметричность относительно диагонали, то есть ;
отражение свойства тождественности расстояния в матрице расстояний проявляется в наличии 0 по диагонали матрицы, так как расстояние объекта с самим собой очевидно равно 0, а также в наличии нулевых значений для абсолютно сходных объектов;
значения расстояний в матрице всегда неотрицательны
В широком смысле расстояния являются отражением такого понятия как различие, что двойственно понятию сходства, а элементы матрицы различия (в общем виде — матрицы дивергенций) двойственны элементам матрицы сходства (в общем виде — матрицы конвергенций). Связь между мерой сходства и мерой различия можно записать как , где F — мера различия; K — мера сходства. Следовательно, все свойства мер сходства можно экстраполировать на соответствующие им меры различия с помощью простого преобразования и наоборот.
Визуально отношения между объектами можно представить с помощью графовых алгоритмов кластеризации. Можно сказать, что расстояния используются намного чаще, чем меры сходства: их чаще реализуют в статистических программах (Statistica, SPSS и др.) в модуле кластерного анализа.
при p = 1 — «манхэттенское расстояние» («расстояние городских кварталов», англ.city-block), или «-норма». Обобщённая мера Хэмминга[3][4] в теоретико-множественной записи (после нормировки) может быть представлена как и являться двойственной мере абсолютного сходства.
при p = 2 — расстояние Евклида. Часто используется и квадрат этого расстояния.
при p → ∞ — sup-метрика, или метрика «доминирования». Также известна как расстояние Чебышёва.
Существуют используемые расстояния и вне данного семейства. Наиболее известным является расстояние Махаланобиса.
Ким, Дж.-О., Мьюллер, Ч. У., Клекка, У. Р., Олдендерфер, М. С., Блэшфилд, Р. К..Факторный, дискриминантный и кластерный анализ.— М.: Финансы и статистика, 1989.— 215с.— ISBN 5-279-00247-X.