From Wikipedia, the free encyclopedia
Distribuția normală este o distribuție de probabilitate continuă. Este numită de asemenea distribuția Gauss deoarece a fost descoperită de către Carl Friedrich Gauss.[1]
Distribuția normală standard (cunoscută,de asemenea, sub numele de distribuție Z) este distribuția normală cu media zero și variația 1 (curbele verzi în imaginea din dreapta). Acesta este adesea numită curba lui Gauss, deoarece graficul densității de probabilitate arată ca un clopot.
Se notează cu: N(μ,σ2), unde μ și σ sunt parametrii din funcția de distribuție care va fi descrisă în continuare.
= = =
===
= =
Funcția de repartiție cumulativă este funcția
Pentru repartiția N~(0,1), această funcție este numită "funcția lui Laplace", și este dată de
Pentru o repartiție normală oarecare N(μ,σ2), se verifică prin schimbarea de variabilă x->(x-μ)/σ că
Pornind de la proprietățile operatorilor de medie și dispersie
se obține că, dacă o variabilă aleatoare este normal repartizată N(μ,σ2), atunci variabila aleatoare redusă
este repartizată N(0,1).
Dacă Xk:N(μk,σk2), k=1,...,n - sunt variabile aleatoare independente, atunci suma lor X1+X2+...+Xn are repartiția:[6]
Ca o consecință imediată a acestui rezultat:
Dacă Xk:N(μ,σ2), k=1,...,n - sunt variabile aleatoare independente, atunci media lor aritmetică (X1+X2+...+Xn)/n are repartiția:
Reprezintă una din cele mai puternice și mai utilizate proprietăți ale distribuției Gauss. Teorema este următoarea:
Dacă Xk - sunt variabile aleatoare independente având aceeași medie și dispersia , atunci limita mediei lor aritmetice (X1+X2+...+Xn)/n atunci cand are proprietatea:
Rezultă că se aproximează cu pentru
O variabilă normal repartizată X:N(μ,σ) ia valori semnificative numai în intervalul (μ-3σ,μ+3σ). Într-adevăr, , valoare care în unele situații poate fi neglijată.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.