Loading AI tools
número primo que é 2 unidades maior ou menor do que outro primo Da Wikipédia, a enciclopédia livre
Números primos gémeos, na teoria dos números, são dois números primos cuja diferença é igual a dois. Os primeiros pares de números primos gémeos são (sequência A001097 na OEIS). Os maiores números conhecidos com estas características são ,[1] descobertos em dezembro de 2011. Existem cerca de mil números primos gémeos abaixo de 100 000 e oito mil abaixo de 1 000 000.[2]
Sabe-se que com exceção dos números 2 e 3 todos os números primos gêmeos são da forma . Daí segue, que todos os pares de primos gêmeos, com exceção do 3 e 5 são da forma . Além disso, segue que o único inteiro que é parte de 2 pares de primos gêmeos é o 5.
Em 1949 P.A. Clement[3] demonstrou que é um par de números primos gémeos se e somente se .[4]
O problema de saber se existe uma infinidade de números primos gémeos é muito antigo, tendo Euclides conjecturado que sim. Esta conjectura é chamada de conjectura dos primos gémeos e é um dos problemas em aberto da Matemática. O matemático francês Alphonse de Polignac conjecturou, de forma mais geral, que para cada natural há infinitos pares de primos e tais que . O caso é a conjectura dos primos gémeos.
Em 17 de Abril de 2013, Yitang Zhang anunciou uma prova de que para algum inteiro menor que 70 milhões, há infinitos pares de primos cuja diferença é .[5] Terence Tao, em sequência, propôs um projeto Polymath com a intenção de melhorar colaborativamente a cota de Zhang.[6] Em abril de 2014, um ano após o anúncio inicial, a melhor cota provada é de 246, no lugar de 70 milhões.[7]
Em 1915, Viggo Brun provou que a soma dos inversos dos primos gémeos é convergente. Esse resultado, chamado teorema de Brun, foi o primeiro uso do crivo de Brun, e ajudou a iniciar o desenvolvimento da teoria dos crivos moderna. Uma versão moderna do argumento de Brun pode ser usado para mostrar que a quantidade de primos gémeos menores que não ultrapassa para alguma constante absoluta C>0.[8] Tal resultado é condizente a primeira conjectura de Hardy-Littlewood, que afirma que a quantidade de primos gémeos menores que deve ser da ordem de para alguma constante .[9]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.