Ponto genérico
Da Wikipédia, a enciclopédia livre
Em matemática, nos campos da topologia geral e particularmente da geometria algébrica, um ponto genérico P de um espaço topológico X é um meio algébrico de entender-se a noção de uma propriedade genérica: a propriedade genérica é uma propriedade do ponto genérico.
Este artigo ou secção contém uma lista de referências no fim do texto, mas as suas fontes não são claras porque não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. (Setembro de 2021) |
Definição
Formalmente, um ponto genérico é um ponto P tal que cada ponto Q de X é uma especialização de P, no sentido de (pre)ordem de especialização (ou conjunto pré-ordenado): o fecho de P é o conjunto inteiro: ele é denso.
Este conceiro é somente não trivial para espaços que não são espaços de Hausdorff, porque um espaço de Hausdorff com um ponto genérico P pode somente ser o conjunto unitário {P}. A terminologia surge do caso da topologia de Zariski de variedades algébricas. Por exemplo, ter um ponto genérico é critério para ser um conjunto irredutível.
Referências
- Qing Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics 6, 2002.
- Eric Brussel, Generic Point; Emory University - ww.mathcs.emory.edu (em inglês)
Wikiwand - on
Seamless Wikipedia browsing. On steroids.