Loading AI tools
um número natural para o qual a soma de todos os seus divisores naturais próprios (excluindo ele mesmo) é igual ao próprio número Da Wikipédia, a enciclopédia livre
Em matemática, um número perfeito é um número natural para o qual a soma de todos os seus divisores naturais próprios (excluindo ele mesmo) é igual ao próprio número.[1] Por exemplo, o número 28 é, pois: . Todo número perfeito é um número triangular, bem como um número hexagonal.
Esta página ou seção foi marcada para revisão devido a incoerências ou dados de confiabilidade duvidosa. |
O IX Livro dos Elementos de Euclides contem a definição de números perfeitos e a seguinte proposição: 'Se tantos números quantos se queira começando a partir da unidade forem dispostos continuamente numa proporção duplicada até que a soma de todos resulte num número primo, e se a soma multiplicada pelo último origina algum número, então o produto será um número perfeito'. Em linguagem matemáticas temos que se 2n − 1 é um número primo então a fórmula 2n−1(2n-1) resulta em um número perfeito. Os gregos antigos estavam limitados aos quatro primeiros dados pela fórmula de Euclides 2n−1(2n−1):
Os matemáticos da Antiguidade fizeram várias afirmações sobre os números perfeitos baseados nos quatro que conheciam, mas a maior parte delas vieram a provar-se serem falsas. Nicômaco de Gerase, um neo-pitagórico do século I, afirmou que como 2, 3, 5, e 7 são precisamente os quatro primeiros primos, o quinto número perfeito seria obtido com n = 11, que é o quinto primo. Todavia, 211 − 1 = 2.047 = 23 × 89 não é primo e daí n = 11 não gera um número perfeito. Duas outras falsas afirmações são:
O quinto número perfeito () tem 8 algarismos, contrariando a primeira afirmação. Como termina em 6, a segunda afirmação parecia não ser falsa. Todavia, o sexto número perfeito (8 589 869 056) também termina em 6. É fácil provar que o último algarismo de um número perfeito par é sempre 6 ou 8.
Para que seja primo, é necessário mas não suficiente que seja primo. Os primos da forma 2n − 1 são conhecidos como primos de Mersenne, em honra do monge e matemático Marin Mersenne, que os estudou em 1.644 junto com a teoria dos números e as propriedades dos números perfeitos.
Um milénio depois de Euclides, Ibn al-Haytham (Alhazen) por volta do ano 1000 percebeu que todo o número perfeito par é da forma 2n−1(2n − 1) onde 2n − 1 é um número primo, Mas não conseguiu provar o resultado.[2] Só no século XVIII Leonhard Euler provou que a fórmula 2n−1(2n − 1) daria todos os números perfeitos pares. Portanto, todo o primo de Mersenne gera um diferente número perfeito par, numa correspondência unívoca entre ambos os conjuntos. Este resultado é muitas vezes referido como o "teorema de Euclides-Euler". Até o momento, 24 de setembro de 2024, conhece-se 51 primos de Mersenne[3] o que significa que há 51 números perfeitos pares conhecidos, sendo o maior 282.589.932 × (282.589.933 − 1), um enorme número com 49.724.095 algarismos.
Com a ajuda do GIMPS, através de uma busca exaustiva, descobriu-se que os primeiros 47 números perfeitos pares são da forma 2n−1(2n − 1) para n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801 e 43112609 (sequência A000043 na OEIS).
E com a ajuda do mesmo GIMPS, descobriu-se que isso também é verdade para n = 57885161, 74207281, 77232917 e 82589933. Não se sabe se há outros algures neste intervalo.
Atualmente temos (sequência A000396 na OEIS)
Não se conhecem actualmente números perfeitos ímpares e se existem ou não é uma conjectura antiga que permanece sem solução no caso geral. Em 2004 foi submetido ao arXiv um artigo pelo matemático australiano Simon Davis contendo uma demonstração.[4]
Estes números estão ligados a uma questão denominada como: "Conjectura de Oystein Ore sobre números harmônicos divisores".
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.