Loading AI tools
Da Wikipédia, a enciclopédia livre
Em cristalografia, o grupo de espaço (ou grupo espacial, grupo cristalográfico, grupo de Fedorov) de um cristal é uma descrição da simetria do cristal, e pode ter um de 230 tipos. Em matemática, grupos de espaço também são estudados em dimensões outras que 3 onde são algumas vezes chamadas grupos de Bieberbach, e são grupos discretos cocompactos de isometrias de um espaço euclideano orientado.
Uma fonte definitiva sobre grupos de espaço tridimensionais é o International Tables for Crystallography (Tabelas Internacionais para Cristalografia).[1]
Os grupos de espaço em 3 dimensões foram primeiramente enumerados por Fyodorov (1891), e pouco depois foram enumerados independentemente por Schönflies (1891) e Barlow (1894). Todas estas primeiras enumerações continham vários pequenos erros, e a lista correta de 230 grupos de espaço foi encontrada durante a correspondência entre Fyodorov e Schönflies.
Grupos de espaço em 2 dimensões são os 17 "grupos de papel de parede" que tinham sido conhecidos durante vários séculos.
Os grupos de espaço em três dimensões são obtidos a partir de combinações dos 32 grupos pontuais cristalográficos com as 14 redes de Bravais, cada um destes últimos pertencente a um dos sete sistemas cristalinos. Isso tem como resultado um grupo de espaço ser uma combinação da simetria translacional de um célula unitária incluindo a centragem da rede, as operações de simetria de grupo pontual de reflexão, rotação e rotação imprópria (também chamada rotoinversão), e as operações de simetria do eixo parafuso e plano de deslizamento. A combinação de todas estas operações de simetria resulta num total de 230 grupos de espaço únicos descrevendo todas as simetrias de cristal possíveis.
Os elementos do grupo espacial que fixam de um ponto do espaço são rotações, reflexões, o elemento identidade, e rotações impróprias.
As translações formam um subgrupo normal abeliano de categoria 3, a chamada rede de Bravais. Existem 14 tipos possíveis de redes de Bravais. O quociente entre o grupo de espaço e a rede de Bravais é um grupo finito, que é um dos 32 grupos pontuais possíveis.
Um plano de deslizamento é uma reflexão em um plano, seguida por uma translação paralela a esse plano. Isso é denotado pora,bouc, dependendo de qual o eixo ao longo do qual ocorre o deslizamento. Há também o deslizamento n, que é um deslizamento ao longo da metade de uma diagonal de uma face, e o deslizamento d, que é um quarto da distância ao longo de uma face ou de uma diagonal de espaço da célula unitária. Este último é o chamado plano de deslizamento do diamante pois ocorre na estrutura do diamante.
Um eixo parafuso é uma rotação em torno de um eixo, seguida de uma translação ao longo da direção do eixo. Estes são denotadas por um número, n, para descrever o grau de rotação, onde o número corresponde ao total de operações que devem ser aplicadas para completar uma rotação completa (por exemplo, 3 significaria uma rotação de um terço do caminho ao redor do eixo de cada vez). O grau de translação é então adicionado como um índice que mostra o quão longe está ao longo do eixo de translação, como uma porção do vector de rede paralelo. Então, 2 1 é uma rotação dupla seguida de uma translação de 1/2 do vetor da rede.
A fórmula geral para a ação de um elemento de um grupo de espaço é
y=x.M +D
onde M é a sua matriz,D é o seu vetor, e na qual o elemento transforma o pontox no ponto y. Em geral, D = D(retículo) + D(M), em que D(M) é uma função única de M que é zero para M igual à identidade. As matrizes M formam um grupo pontual que é uma base do grupo de espaço; a rede tem de ser simétrica sob este grupo pontual.
A dimensão da rede pode ser menor que a dimensão global, resultando em um grupo de espaço "subperiódico". Para (dimensão global, dimensão da rede):
Há pelo menos oito métodos de nomear grupos espaciais. Alguns desses métodos podem atribuir diversos nomes diferentes para o mesmo grupo de espaço, pelo que no total há muitos milhares de nomes diferentes.
1 2
, C 2 2
, C 3 2
.
|
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.