Loading AI tools
função que associa imagens distintas a elementos distintos Da Wikipédia, a enciclopédia livre
Na matemática, uma função injectiva (ou injetora) é uma função que preserva a distinção: nunca aponta elementos distintos de seu domínio para o mesmo elemento de seu contradomínio. Em outras palavras, cada elemento do contradomínio da função é a imagem de no máximo um elemento de seu domínio. Ou seja, Uma função diz-se injectiva (ou injetora) se e somente se quaisquer que sejam e (pertencentes ao domínio da função), é diferente de implica que f() é diferente de f():
Graficamente, uma função é injectiva se e somente se nenhuma recta horizontal intersecta o seu gráfico em mais do que um ponto.
É importante notar que, neste tipo de função, o contradomínio tem uma cardinalidade sempre maior ou igual à do domínio. Além disso, pode haver mais elementos no contra-domínio que no conjunto imagem da função.
Ocasionalmente, uma função injetiva de a é denotada usando uma seta com uma "cauda separada" (U+21A3 ↣ RIGHTWARDS ARROW WITH TAIL).[1] O conjunto de funções injetivas de a pode ser denominado usando uma notação derivada daquela usada para decrescimento de potências fatoriais, uma vez que se e são conjuntos finitos com respectivamente e elementos, o número de injeções de a é
Um monomorfismo é uma generalização de uma função injetiva na teoria das categorias.
Seja uma função cujo domínio é um conjunto Diz-se que a função é injetiva desde que para todos e em sempre que então isto é, implica Equivalente, se então
Simbolicamente,
que é logicamente equivalente à contrapositiva,
A demonstração segue adiante:
→ Hipótese: T não é injetora → com para algum
Das propriedades da transformação linear:
→
Como u ≠ v ⇔ u - v ≠ 0, então:
→
O caso de T ser injetora é exclusivo e podemos afirmar que se
Segue a demonstração:
→ Prova da ida:
Hipótese: A é injetiva
Tese: A leva vetores LI em vetores LI.
Se são linearmente independentes provaremos que são linearmente independentes.
Com efeito se
Usando a linearidade de A:
⇒
⇒
Então temos que pertence ao núcleo de e como é injetiva, ou seja,
, como são LI tem-se , ou seja são linearmente independentes.
← Prova da volta:
Hipótese: A leva vetores LI em vetores LI.
Tese: A é injetiva.
Sendo é LI então é portanto e é injetiva.
Segue-se desse teorema que se tem dimensão finita, assim por exemplo não existe transformação linear injetiva de em
Funções com inversas à esquerda são sempre injeções. Isto é, dado se houver uma função tal que, para cada
( pode ser desfeita por )
então é injetiva. Nesse caso, é chamada de retração de Por outro lado, é chamado de seção de
Inversamente, toda injeção com domínio não vazio tem uma inversa à esquerda, que pode ser definida fixando um elemento a no domínio de de modo que seja igual à pré-imagem única de sob se existir e caso contrário.[2]
A inversa à esquerda não é necessariamente um inverso de porque a composição na outra ordem, pode diferir da identidade em Em outras palavras, uma função injetora pode ser "invertida" por uma inversa à esquerda, mas é não necessariamente invertível, o que requer que a função seja bijetiva.
Na verdade, para transformar uma função injetora em uma função bijetiva (portanto, invertível), basta substituir seu contradomínio pelo seu intervalo real Isto é, vamos tal que para todo em então g é bijetiva. De fato, pode ser fatorada como onde é a função de inclusão de em
Mais geralmente, as funções parciais injetivas são chamadas de bijeções parciais.
Uma prova de que uma função é injetiva depende de como a função é apresentada e quais propriedades ela contém. Para funções que são dadas por alguma fórmula, há uma ideia básica. Usamos a contrapositiva da definição de injetividade, ou seja, se então [3]
Prova: Seja Suponha que Então, Portanto, segue da definição que é injetiva.
não é injetiva, já que para e temos , ou seja, com .
Existem vários outros métodos para provar que uma função é injetiva. Por exemplo, no cálculo se é uma função diferenciável definida em algum intervalo, então é suficiente mostrar que a derivada é sempre positiva ou sempre negativa nesse intervalo. Na álgebra linear, se é uma transformação linear, é suficiente mostrar que o núcleo de contém apenas o vetor zero. Se é uma função com domínio finito, basta olhar a lista de imagens de cada elemento de domínio e verificar se nenhuma imagem ocorre duas vezes na lista.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.