Loading AI tools
arquitetura para processadores da AMD Da Wikipédia, a enciclopédia livre
A família AMD Bulldozer 15h é uma microarquitetura de microprocessadores para as linhas de processadores FX e Opteron, desenvolvida pela AMD para os mercados de desktops e servidores.[1][2] Bulldozer é o codinome desta família de microarquiteturas. Foi lançado em 12 de outubro de 2011, como sucessor da microarquitetura K10.
Bulldozer - Family 15h | |
---|---|
Lançamento | |
final de 2011 | |
Fabricantes comuns | |
AMD | |
Arquitetura e classificação | |
Nó de tecnologia | |
32nm | |
Conjunto de instruções | |
x86-64 | |
Especificações físicas | |
Socket | |
AM3+ | |
Produtos, modelos, variantes | |
Nome(s) principal(ais) | |
AMD FX Opteron | |
História | |
Predecessor(es) | |
Família 10h (K10) | |
Sucessor(es) | |
Piledriver - Família 15h (2ª geração) |
O Bulldozer foi projetado do zero, não um desenvolvimento de processadores anteriores.[3] O núcleo é voltado especificamente para produtos de computação com TDPs de 10 a 125 watts. A AMD afirma melhorias dramáticas na eficiência de desempenho por watt em aplicativos de computação de alto desempenho (HPC) com núcleos Bulldozer.
Os núcleos Bulldozer suportam a maioria dos conjuntos de instruções implementados pelos processadores Intel (Sandy Bridge) disponíveis em sua introdução (incluindo SSE4.1, SSE4.2, AES, CLMUL, e AVX) bem como novos conjuntos de instruções propostos pela AMD; ABM, XOP, FMA4 e F16C.[4] Somente Bulldozer GEN4 (Excavator) suporta conjuntos de instruções AVX2.
De acordo com a AMD, as CPUs baseadas em Bulldozer são baseadas na tecnologia de processo de silício em isolador (SOI) de 32 nm da GlobalFoundries e reutilizam a abordagem do DEC para desempenho de computador multitarefa com os argumentos de que, de acordo com notas de imprensa, "equilibra computadores dedicados e compartilhados recursos para fornecer um design altamente compacto e com alta contagem de unidades que é facilmente replicado em um chip para dimensionamento de desempenho."[5] Em outras palavras, ao eliminar alguns dos elementos "redundantes" que naturalmente aparecem em designs multicore, a AMD espera tirar melhor proveito de suas capacidades de hardware, usando menos energia.
Implementações baseadas em Bulldozer construídas em SOI de 32 nm com HKMG chegaram em outubro de 2011 para servidores e desktops. O segmento de servidores incluía o processador Opteron de chip duplo (16 núcleos) de codinome Interlagos (para Socket G34) e chip único (4, 6 ou 8 núcleos) Valencia (para Socket C32), enquanto o Zambezi (4, 6 e 8 núcleos) desktops direcionados no AM3+.[6][7]
Bulldozer é a primeira grande reformulação da arquitetura de processador da AMD desde 2003, quando a empresa lançou seus processadores K8, e também apresenta duas FPUs compatíveis com FMA de 128 bits que podem ser combinadas em uma FPU de 256 bits. Este design é acompanhado por dois clusters inteiros, cada um com 4 pipelines (o estágio de busca/decodificação é compartilhado). Bulldozer também introduziu cache L2 compartilhado na nova arquitetura. A AMD chama esse design de “Módulo”. Um projeto de processador de 16 núcleos apresentaria oito desses “módulos”,[carece de fontes] mas o sistema operacional reconhecerá cada “módulo” como dois núcleos lógicos.
A arquitetura modular consiste em cache L2 compartilhado multithread e FlexFPU, que utiliza multithreading simultâneo. Cada núcleo inteiro físico, dois por módulo, é de thread único, em contraste com o Hyperthreading da Intel, onde dois threads virtuais simultâneos compartilham os recursos de um único núcleo físico.[8][9]
Em uma revisão retrospectiva, Jeremy Laird da revista APC comentou sobre os problemas do Bulldozer, observou que ele era mais lento do que o design anterior do Phenom II K10 e que o ecossistema de software para PC ainda não havia "adotado" o modelo multithread. Pela sua observação, os problemas causaram uma grande perda para a AMD, que a empresa perdeu mais de 1 bilhão de dólares em 2012, e que alguns observadores da indústria previam a falência em meados de 2015. Mais tarde, a empresa conseguiu voltar ao lucro. As razões mencionadas para recuperar a lucratividade foram o desinvestimento anterior da fabricação interna na GlobalFoundries e, em seguida, a terceirização da fabricação para a TSMC e a criação de um novo design de CPU Ryzen.[10]
Bulldozer fez uso de "Clustered Multithreading" (CMT), uma técnica onde algumas partes do processador são compartilhadas entre dois threads e algumas partes são exclusivas para cada thread. Exemplos anteriores de tal abordagem para multithreading não convencional podem ser rastreados até a CPU UltraSPARC T1 da Sun Microsystems de 2005. Em termos de complexidade e funcionalidade de hardware, um módulo Bulldozer CMT é igual a um processador dual-core em suas capacidades de cálculo inteiro, e a um processador single-core ou a um dual-core deficiente em termos de poder computacional de ponto flutuante, dependendo sobre se o código está saturado em instruções de ponto flutuante em ambos os threads em execução no mesmo módulo CMT e se a FPU está executando operações de ponto flutuante de 128 ou 256 bits. A razão para isso é que para cada dois núcleos inteiros, ou seja, dentro do mesmo módulo, existe uma única unidade de ponto flutuante composta por um par de unidades de execução FMAC de 128 bits.
CMT é, de certa forma, uma filosofia de design mais simples, mas semelhante ao SMT; ambos os projetos tentam utilizar unidades de execução de forma eficiente; em qualquer método, quando dois threads competem por alguns pipelines de execução, há uma perda de desempenho em um ou mais threads. Devido aos núcleos inteiros dedicados, os módulos da família Bulldozer funcionaram aproximadamente como um processador dual-core e dual-threaded durante seções de código que eram totalmente inteiras ou uma mistura de cálculos inteiros e de ponto flutuante; ainda assim, devido ao uso SMT de pipelines de ponto flutuante compartilhados, o módulo teria desempenho semelhante a um processador SMT de núcleo único e thread duplo (SMT2) para um par de threads saturados com instruções de ponto flutuante. (Ambas as duas últimas comparações pressupõem que o processador possui um núcleo de execução igualmente amplo e capaz, em termos de número inteiro e de ponto flutuante, respectivamente.)
Tanto o CMT quanto o SMT atingem eficácia máxima ao executar código inteiro e de ponto flutuante em um par de threads. O CMT permanece com eficácia máxima enquanto trabalha em um par de threads que consistem em código inteiro, enquanto no SMT, um ou ambos os threads terão desempenho inferior devido à competição por unidades de execução inteiras. A desvantagem do CMT é um número maior de unidades de execução inteiras ociosas em um único caso de thread. No caso de thread único, o CMT está limitado a usar no máximo metade das unidades de execução inteiras em seu módulo, enquanto o SMT não impõe tal limite. Um grande núcleo SMT com circuitos inteiros tão amplos e rápidos quanto dois núcleos CMT poderia, em teoria, ter momentaneamente até o dobro do desempenho de números inteiros em um único caso de thread. (Mais realisticamente para o código geral como um todo, a Regra de Pollack estima um fator de aceleração de , ou aumento de aproximadamente 40% no desempenho.)
Os processadores CMT e um processador SMT típico são semelhantes no uso compartilhado eficiente do cache L2 entre um par de threads.
O pipeline mais longo permitiu que a família de processadores Bulldozer atingisse uma frequência de clock muito mais alta em comparação com seus antecessores K10. Embora isso tenha aumentado as frequências e a taxa de transferência, o pipeline mais longo também aumentou as latências e aumentou as penalidades por erros de previsão nos ramais.
As larguras de emissão (e pico de execução de instruções por ciclo) de um núcleo Jaguar, K10 e Bulldozer são 2, 3 e 4, respectivamente. Isso fez do Bulldozer um design mais superescalar em comparação com o Jaguar/Bobcat. No entanto, devido ao núcleo um pouco mais amplo do K10 (além da falta de refinamentos e otimizações em um design de primeira geração), a arquitetura Bulldozer normalmente funcionava com IPC um pouco mais baixo em comparação com seus antecessores K10. Foi somente com os refinamentos feitos no Piledriver e no Steamroller que o IPC da família Bulldozer começou a exceder claramente o dos processadores K10, como o Phenom II.
que possuem a mesma funcionalidade do conjunto de instruções SSE5 anteriormente proposto pela AMD, mas com compatibilidade com o esquema de codificação AVX.
As primeiras remessas de receitas de processadores Opteron baseados em Bulldozer foram anunciadas em 7 de setembro de 2011.[28] O FX-4100, FX-6100, FX-8120 e FX-8150 foram lançados em outubro de 2011; com os processadores AMD da série FX restantes lançados no final do primeiro trimestre de 2012.
Modelo | [Módulos/FPUs] | Freq. (GHz) | Max. turbo (GHz) | Cache L2 | L3 (MB) | TDP (W) | Memória DDR3 | Turbo Core
2.0 |
Socket | |
---|---|---|---|---|---|---|---|---|---|---|
Full load | Half load | |||||||||
FX-8100 | [4]8 | 2.8 | 3.1 | 3.7 | 4× 2MB | 8 | 95 | 1866 | Sim | AM3+ |
FX-8120 | 3.1 | 3.4 | 4.0 | 125 | ||||||
FX-8140 | 3.2 | 3.6 | 4.1 | 95 | ||||||
FX-8150 | 3.6 | 3.9 | 4.2 | 125 | ||||||
FX-8170 | 3.9 | 4.2 | 4.5 | |||||||
FX-6100 | [3]6 | 3.3 | 3.6 | 3.9 | 3× 2MB | 95 | ||||
FX-6120 | 3.6 | 3.9 | 4.2 | |||||||
FX-6130 | 3.6 | 3.8 | 3.9 | |||||||
FX-6200 | 3.8 | 4.0 | 4.1 | 125 | ||||||
FX-4100 | [2]4 | 3.6 | 3.7 | 3.8 | 2x 2MB | 95 | ||||
FX-4120 | 3.9 | 4.0 | 4.1 | |||||||
FX-4130 | 3.8 | 3.9 | 4.0 | 4 | 125 | |||||
FX-4150 | 3.8 | 8 | 95/125 | |||||||
FX-4170 | 4.2 | 4.3 | 125 |
Existem duas séries de processadores baseados em Bulldozer para servidores: a série Opteron 4200 (Socket C32, codinome Valencia, com até quatro módulos) e a série Opteron 6200 (Socket G34, codinome Interlagos, com até 8 módulos).[31][32]
Em novembro de 2015, a AMD foi processada de acordo com a Lei de Remédios Legais dos Consumidores da Califórnia e a Lei de Concorrência Desleal por supostamente deturpar as especificações dos chips Bulldozer. A ação coletiva, movida em 26 de outubro no Tribunal Distrital dos EUA para o Distrito Norte da Califórnia, afirma que cada módulo Bulldozer é na verdade um único núcleo de CPU com algumas características de dual-core, em vez de um verdadeiro design dual-core.[33] Em agosto de 2019, a AMD concordou em resolver o processo por US$ 12,1 milhões.[34][35]
Em 24 de outubro de 2011, os testes de primeira geração feitos pela Phoronix confirmaram que o desempenho da CPU Bulldozer estava um pouco abaixo do esperado.[36] Em vários testes, a CPU teve desempenho semelhante ao Phenom 1060T da geração anterior.
Posteriormente, o desempenho aumentou substancialmente, à medida que várias otimizações do compilador e correções de driver de CPU foram lançadas.[37][38]
As primeiras CPUs Bulldozer tiveram uma resposta mista. Foi descoberto que o FX-8150 teve um desempenho ruim em benchmarks que não eram altamente threaded, ficando atrás dos processadores da série Intel Core i* de segunda geração e sendo igualado ou até mesmo superado pelo próprio Phenom II X6 da AMD em velocidades de clock mais baixas. Em benchmarks altamente segmentados, o FX-8150 teve desempenho equivalente ao Phenom II X6 e ao Intel Core i7 2600K, dependendo do benchmark. Dado o desempenho geral mais consistente do Intel Core i5 2500K a um preço mais baixo, esses resultados deixaram muitos revisores desapontados. Descobriu-se que o processador consome muita energia sob carga, especialmente quando com overclock, em comparação com o Sandy Bridge da Intel.[39][40]
Em 13 de outubro de 2011, a AMD declarou em seu blog que "há alguns em nossa comunidade que acham que o desempenho do produto não atendeu às suas expectativas", mas mostrou benchmarks em aplicações reais onde superou o desempenho do Sandy Bridge i7 2600k e do AMD X6 1100T.[41]
Em janeiro de 2012, a Microsoft lançou dois hotfixes para Windows 7 e Server 2008 R2 que melhoram marginalmente o desempenho das CPUs Bulldozer, abordando as preocupações de agendamento de threads levantadas após o lançamento do Bulldozer.[42][43][44]
Em 6 de março de 2012, a AMD publicou um artigo da base de conhecimento afirmando que havia um problema de compatibilidade com processadores FX e certos jogos na plataforma de distribuição de jogos digitais amplamente utilizada, Steam. A AMD afirmou ter fornecido uma atualização de BIOS para vários fabricantes de placas-mãe (a saber: Asus, Gigabyte Technology, MSI e ASRock) que resolveria o problema.[45]
Em setembro de 2014, o CEO da AMD, Rory Read, admitiu que o design do Bulldozer não foi uma "parte revolucionária" e que a AMD teve que conviver com o design por quatro anos.[46]
Em 31 de agosto de 2011, a AMD e um grupo de overclockers conhecidos, incluindo Brian McLachlan, Sami Mäkinen, Aaron Schradin e Simon Solotko, conseguiram estabelecer um novo recorde mundial de frequência de CPU usando o processador FX-8150 Bulldozer inédito e com overclock. Antes daquele dia, o recorde era de 8,309 GHz, mas o Bulldozer combinado com o resfriamento de hélio líquido atingiu um novo recorde de 8,429 GHz. Desde então, o recorde foi superado em 8,58 GHz por Andre Yang usando nitrogênio líquido.[47][48] Em 22 de agosto de 2014 e usando um FX-8370 (Piledriver), The Stilt da Team Finland alcançou uma frequência máxima de CPU de 8,722 GHz.[49]
Os registros de frequência de clock da CPU estabelecidos por CPUs Bulldozer com overclock só foram quebrados quase uma década depois por overclocks de CPUs Core Raptor Lake de 13ª geração da Intel em outubro de 2022.[50]
Piledriver é o codinome da AMD para sua microarquitetura aprimorada de segunda geração baseada no Bulldozer. Os núcleos AMD Piledriver são encontrados nas séries de APUs e CPUs baseadas em Socket FM2 Trinity e Richland e na série de CPUs FX baseadas em Socket AM3 + Vishera. O Piledriver foi a última geração da família Bulldozer disponível para soquete AM3+ e com cache L3. Os processadores Piledriver disponíveis para soquetes FM2 (e sua variante móvel) não vêm com cache L3, pois o cache L2 é o cache de último nível para todos os processadores FM2/FM2+.
Steamroller é o codinome da AMD para sua microarquitetura de terceira geração baseada em uma versão melhorada do Piledriver. Os núcleos Steamroller são encontrados na série de APUs e CPUs baseadas em Socket FM2 + Kaveri.
Excavator é o codinome do núcleo Bulldozer de quarta geração.[51] Excavator foi implementada como APUs 'Carrizo' série A, APUs "Bristol Ridge" série A e CPUs Athlon x4.[52]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.