Nilradykał

Z Wikipedii, wolnej encyklopedii

Nilradykał – dla danego pierścienia przemiennego zbiór wszystkich jego elementów nilpotentnych[1].

Własności

  • Nilradykał jest ideałem, bo jeśli są takimi elementami pierścienia że i to
i

Przykłady

  • W pierścieniu wielomianów zmiennych o współczynnikach z pewnego pierścienia nilradykał jest zbiorem tych wielomianów, których wszystkie współczynniki są elementami nilpotentnymi w W szczególności, twierdzenie to jest prawdziwe dla pierścienia wielomianów jednej zmiennej
  • W pierścieniu reszt modulo 8 jedynym ideałem pierwszym jest Jednocześnie jest on nilradykałem, bo w mamy i
  • W pierścieniu są dwa ideały pierwsze – ideały główne generowane przez reszty 2 i 3. Ich częścią wspólną jest ideał główny który jest jednocześnie nilradykałem. Z drugiej strony, ideał (6) nie jest ideałem pierwszym, bo nie należy do niego ani 2, ani 3, a ich iloczyn jest równy reszcie 6, która należy do (6).
  • W pierścieniu ideałami pierwszymi są ideały główne (2), (3) i (5), a nilradykałem jest (30).

Przypisy

Bibliografia

Literatura dodatkowa

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.