Loading AI tools
Z Wikipedii, wolnej encyklopedii
Kryterium całkowe (także kryterium całkowe Maclaurina-Cauchy’ego[1]) – kryterium zbieżności szeregów o wyrazach dodatnich oparte na idei porównywania danego szeregu z całką. Wczesna forma tego kryterium została odkryta w Indiach przez Madhawę[2] w XIV wieku i jego następców ze szkoły w Kerali. W Europie kryterium zostało później ponownie odkryte przez Maclaurina w 1742[3] i Cauchy’ego[4].
Niech będzie funkcją dodatnią i malejącą. Niech ponadto dla każdego Wówczas szereg
(A) |
jest zbieżny wtedy i tylko wtedy, gdy zbieżna jest całka niewłaściwa[5]
(I) |
Całka (I) wyraża pole powierzchni pod krzywą (na ilustracji obok zaznaczonej na czarno) na przedziale Wyrazy szeregu (A) podają wielkość rzędnych wykresu w punktach a więc wyrażają pola prostokątów o podstawie i wysokościach (na ilustracji obok zaznaczone na zielono). Suma szeregu (A) jest zatem sumą pól rzeczonych prostokątów. Biorąc to pod uwagę, kryterium całkowe można zinterpretować następująco: jeżeli pole pod wykresem jest skończone, to tym bardziej skończona jest suma pól (równa sumie szeregu (A)). Dokonując przesunięcia każdego z prostokątów o w prawo, wykres na przedziale znajdzie się zawarty w figurze złożonej ze wspomnianych przesunięć. W szczególności, jeżeli pole pod wykresem jest nieskończone, to nieskończone musi być także pole rozważanej figury, a więc i tym samym suma szeregu (A)[6].
Ponieważ funkcja jest malejąca zachodzą nierówności
Oznacza to, że
a stąd
W przypadku gdy całka (I) jest zbieżna, ciąg całek częściowych
jest ograniczony, co pociąga ograniczoność ciągu sum częściowych
szeregu (A). Ciąg ten jest także niemalejący (z założenia, że wyrazy szeregu (A) są nieujemne), więc jako ograniczony i niemalejący ciąg liczb rzeczywistych jest on zbieżny, a tym samym szereg (A) jest zbieżny.
W przypadku, gdy szereg (A) jest zbieżny, wyżej zdefiniowany ciąg całek częściowych jest również ograniczony, a więc zbieżny (do całki (I)) jako ograniczony i niemalejący ciąg liczb rzeczywistych[7].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.