Loading AI tools
Z Wikipedii, wolnej encyklopedii
Identyfikacja – rozpoznawanie (sporządzenie opisu matematycznego) właściwości statycznych i dynamicznych elementów i układów automatyki. Identyfikacja oznacza znalezienie zależności między wejściem a wyjściem (dla elementu automatyki, obiektu, układu regulacji) na podstawie danych doświadczalnych. Po poddaniu obiektu (procesu) szeregowi doświadczeń dobiera się bowiem parametry modelu w taki sposób, aby pasował on do danych doświadczalnych.
Identyfikacja odgrywa zasadniczą rolę w odniesieniu do obiektów i procesów regulacji, gdyż umożliwia poprawne nastrojenie układu regulacji automatycznej. W czasie identyfikacji określane są bowiem wartości parametrów modelu obiektu (procesu), które wykorzystuje się następnie w doborze nastaw regulatora sterującego rzeczywistym obiektem (procesem).
Identyfikacja systemów lub procesów to termin opisujący zespół metod i narzędzi i algorytmy, które mają na celu zbudować dynamiczny model systemu lub procesu na podstawie danych pomiarowych zebranych z wejścia i wyjścia. Model taki może opisywać:
Model budowany jest poprzez wyszukiwanie zależności i relacji pomiędzy zmierzonymi danymi bez fenomenologicznej analizy systemu lub procesu (czyli bez szczegółowego badania zjawisk fizycznych zachodzących w systemie lub procesie). O takim sposobie postępowania czasami mówi się, że traktuje system lub proces jako "czarną skrzynkę".
Przeciwstawną metodą do identyfikacji jest modelowanie analityczne. Polega ono na tym, że system dzielony jest na podsystemy, których właściwości oraz prawa fizyczne nimi rządzące dają się opisać modelami matematycznymi. Metoda ta jest zależna od skali problemu, może być bardzo czasochłonna i prowadzić do uzyskania modeli matematycznych zbyt skomplikowanych, by nadawały się do dalszego wykorzystania.
Identyfikacja jest procesem iteracyjnym, który może posiadać następujące etapy.
Uzyskanie niezadowalających wyników w trakcie weryfikacji modelu powoduje konieczność powtórzenia niektórych etapów identyfikacji. Zazwyczaj najpierw powtarza się etapy 7-8 lub 6-7-8. Po wyczerpaniu możliwości wprowadzania zmian na tych etapach należy pomyśleć o powtórzeniu etapu 5, a nawet 4.
W warunkach rzeczywistych należy zrobić wszystko, żeby nie było potrzeby powtarzania etapów 1-2, gdyż ich przeprowadzenie zazwyczaj wiąże się z dużymi kosztami. Dla przykładu, identyfikacja modelu hutniczego pieca indukcyjnego może wiązać się ze znacznymi wydatkami na energię do zasilania pieca. Dlatego należy solidnie przygotować eksperyment identyfikacyjny, między innymi poprzez staranny wybór sygnałów pobudzających.
Uzyskany w trakcie doświadczeń identyfikacyjnych model można wykorzystać do syntezy regulatora, bądź też na jego podstawie można próbować przewidzieć zachowanie identyfikowanego systemu w przyszłości (tzw. predykcja).
Najbardziej podstawowym podziałem metod identyfikacji jest podział na identyfikację modeli ciągłych i modeli dyskretnych. Identyfikacja modeli ciągłych, poza tak zwaną klasyczną identyfikacją modeli w postaci odpowiedzi skokowych pierwszego i drugiego rzędu, jest ciągle dziedziną wymagającą wielu badań naukowych. Dalsza część opisu zajmuje się więc identyfikacją modeli dyskretnych w czasie.
Kolejny podział można przeprowadzić na metody parametryczne i metody nieparametryczne:
Inny jeszcze podział można przeprowadzić w oparciu o typ identyfikowanego systemu. Można tutaj wyróżnić:
Do algorytmów powszechnie stosowanych w identyfikacji systemów (procesów) należą:
Do typowych problemów występujących w trakcie identyfikacji należą:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.