ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ QG ਸਿਧਾਂਤਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦਾ ਖੇਤਰ ਹੈ ਜੋ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਸਿਧਾਂਤਾਂ ਮੁਤਾਬਿਕ ਗਰੈਵਿਟੀ ਦੇ ਫੋਰਸ ਨੂੰ ਦਰਸਾਉਣਾ ਖੋਜਦਾ ਹੈ।[1]
ਇਹ article ਸਵੈ-ਪ੍ਰਕਾਸ਼ਿਤ ਸੋਮਿਆਂ ਪ੍ਰਤਿ ਗਲਤ ਹਵਾਲੇ ਰੱਖਦਾ ਗਹੋ ਸਕਦਾ ਹੈ. (June 2011) |
ਗਰੈਵਿਟੀ ਦੀ ਤਾਜ਼ਾ ਸਮਝ ਅਲਬਰਟ ਆਈਨਸਟਾਈਨ ਦੀ ਜਨਰਲ ਥਿਊਰੀ ਔਫ ਰਿਲੇਟੀਵਿਟੀ ਤੇ ਅਧਾਰਿਤ ਹੈ, ਜੋ ਕਲਾਸੀਕਲ ਫਿਜ਼ਿਕਸ ਦੇ ਢਾਂਚੇ ਦੇ ਅੰਦਰ ਫਾਰਮੂਲਾਬੱਧ ਕੀਤੀ ਗਈ ਹੈ। ਦੂਜੇ ਪਾਸੇ, ਗੈਰ-ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸਾਂ ਨੂੰ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਢਾਂਚੇ ਅੰਦਰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਮੂਲ ਰੂਪ ਵਿੱਚ ਪ੍ਰੌਬੇਬਿਲਟੀ ਉੱਤੇ ਅਧਾਰਿਤ ਭੌਤਿਕੀ ਘਟਨਾਵਾਂ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਵੱਖਰੀ ਕਿਸਮ ਦੀ ਫਾਰਮੂਲਾ ਬਣਤਰ ਹੈ।[2] ਗਰੈਵਿਟੀ ਦੇ ਵਿਵਰਣ ਲਈ ਕੁਆਂਟਮ ਮਕੈਨੀਕਲ ਜਰੂਰਤ ਦਾ ਜਿਮੇਵਾਰ ਇਹ ਤੱਥ ਹੈ ਕਿ ਕਿਸੇ ਕਲਾਸੀਕਲ ਸਿਸਟਮ ਦਾ ਸਥਿਰਤਾ ਨਾਲ ਕਿਸੇ ਕੁਆਂਟਮ ਸਿਸਟਮ ਨਾਲ ਸੰਯੋਜਨ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ।[3][4]
ਬੇਸ਼ੱਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਸਿਧਾਂਤਾਂ ਨਾਲ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਮੇਲ ਮਿਲਾਪ ਕਰਨ ਲਈ ਗਰੈਵਿਟੀ ਦੀ ਕੁਆਂਟਮ ਥਿਊਰੀ ਦੀ ਜਰੂਰਤ ਹੈ, ਮੁਸ਼ਕਲਾਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ ਜਦੋਂ ਗਰੈਵਿਟੀ ਦੇ ਫੋਰਸ ਉੱਤੇ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਆਮ ਨੁਸਖਿਆਂ ਨੂੰ ਲਾਗੂ ਕਰਨ ਦੀਆਂ ਕੋਸ਼ਿਸ਼ਾਂ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ । ਇੱਕ ਤਕਨੀਕੀ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ, ਸਮੱਸਿਆ ਇਹ ਹੈ ਕਿ ਜੋ ਥਿਊਰੀ ਇਸਤਰਾਂ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਓਹ ਪੁਨਰਮਾਨਕੀਕਰਨਯੋਗ (ਰੀਨੌਰਮਲਾਈਜ਼ੇਬਲ) ਨਹੀਂ ਹੁੰਦੀ ਅਤੇ ਇਸ ਕਰਕੇ ਅਰਥ ਭਰਪੂਰ ਭੌਤਿਕੀ ਅਨੁਮਾਨਾਂ ਨੂੰ ਬਣਾਉਣ ਲਈ ਨਹੀਂ ਵਰਤੀ ਜਾ ਸਕਦੀ । ਨਤੀਜੇ ਵਜੋਂ, ਸਿਧਾਂਤਵਾਦੀਆਂ ਨੇ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਸਮੱਸਿਆ ਲਈ ਹੋਰ ਮੂਲ ਦ੍ਰਿਸ਼ਟੀਕੋਣਾਂ ਤੱਕ ਪਹੁੰਚ ਕੀਤੀ ਹੈ, ਜਿਸ ਵਿੱਚੋਂ ਸਟਰਿੰਗ ਥਿਊਰੀ ਅਤੇ ਲੂਪ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਸਭ ਤੋਂ ਜਿਆਦਾ ਪ੍ਰਸਿੱਧ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਪ੍ਰਾਪਤੀਆਂ ਹਨ । ਇੱਕ ਤਾਜ਼ਾ ਵਿਕਾਸ ਕਾਰਣਾਤਮਿਕ ਫਰਮੀਔਨ ਸਿਸਟਮਾਂ ਦੀ ਥਿਊਰੀ ਹੈ ਜੋ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ, ਅਤੇ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਨੂੰ ਸੀਮਤ ਮਾਮਿਲਆਂ ਦੇ ਤੌਰ ਤੇ ਦਿੰਦੀ ਹੈ। [5]
ਸਖਤੀ ਨਾਲ ਕਹਿੰਦੇ ਹੋਏ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦਾ ਉਦੇਸ਼ ਸਿਰਫ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਦਾ ਕੁਆਂਟਮ ਵਰਤਾਓ ਦਰਸਾਉਣਾ ਹੈ ਅਤੇ ਇਸਦੇ ਉਦੇਸ਼ ਪ੍ਰਤਿ ਇਹ ਗਲਤਫਹਿਮੀ ਨਹੀਂ ਪਾਲਣੀ ਚਾਹੀਦੀ ਕਿ ਇਸਦਾ ਉਦੇਸ਼ ਸਾਰੀਆਂ ਮੁਢਲੀਆਂ ਇੰਟ੍ਰੈਕਸ਼ਨਾਂ ਨੂੰ ਇਕੱਠਾ ਕਰਕੇ ਕਿਸੇ ਸਿੰਗਲ ਗਣਿਤਿਕ ਢਾਂਚੇ ਵਿੱਚ ਪਿਰੋਣਾ ਹੈ। ਜਦੋ ਗਰੈਵਿਟੀ ਬਾਰੇ ਹਾਜ਼ਰ ਸਮਝ ਵਿੱਚ ਕੋਈ ਵੀ ਠੋਸ ਸੁਧਾਰ ਏਕੀਕਰਨ (ਯੂਨੀਫੀਕੇਸ਼ਨ) ਵੱਲ ਹੋਰ ਕੰਮ ਵਿੱਚ ਮੱਦਦ ਕਰੇਗਾ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦਾ ਅਧਿਐਨ ਅਪਣੇ ਆਪ ਵਿੱਚ ਉਹ ਖੇਤਰ ਹੈ ਜਿਸਦੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਸ਼ਾਖਾਵਾਂ ਏਕੀਕਰਨ ਵੱਲ ਵੱਖਰੀਆਂ ਵੱਖਰੀਆਂ ਪਹੁੰਚਾਂ/ਪ੍ਰਾਪਤੀਆਂ ਰੱਖਦੀਆਂ ਹਨ । ਬੇਸ਼ੱਕ ਕੁੱਝ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਥਿਊਰੀਆਂ, ਜਿਵੇਂ ਸਟਰਿੰਗ ਥਿਊਰੀ, ਹੋਰ ਮੁਢਲੇ ਫੋਰਸਾਂ ਨਾਲ ਗਰੈਵਿਟੀ ਦਾ ਏਕੀਕਰਨ ਕਰਨ ਦਾ ਯਤਨ ਕਰਦੀਆਂ ਹਨ, ਹੋਰ ਥਿਊਰੀਆਂ, ਜਿਵੇਂ ਲੂਪ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ, ਅਜਿਹਾ ਕੋਈ ਯਤਨ ਨਹੀਂ ਕਰਦੀ; ਸਗੋਂ, ਇਹ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਨੂੰ ਕੁਆਂਟਾਇਜ਼ (ਨਿਰਧਾਰਿਤ) ਕਰਨ ਦਾ ਹੰਭਲਾ ਮਾਰਦੀਆਂ ਹਨ ਜਦੋਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਨੂੰ ਹੋਰ ਫੋਰਸਾਂ ਨਾਲੋਂ ਵੱਖਰਾ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ। ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਥਿਊਰੀ ਜੋ ਕਿ ਸਾਰੀਆਂ ਗਿਆਤ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਇੱਕ ਗ੍ਰੈਂਡ ਯੂਨੀਫੀਕੇਸ਼ਨ (ਵਿਸ਼ਾਲ ਏਕੀਕਰਨ) ਵੀ ਹੈ ਨੂੰ ਕਦੇ ਕਦੇ ਥਿਊਰੀ ਔਫ ਐਵਰੀਥਿੰਗ (TOE) (ਸਭ ਚੀਜ਼ਾਂ ਦੀ ਥਿਊਰੀ) ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। [6]
ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀਆਂ ਕਠਿਨਾਈਆਂ ਵਿੱਚੋਂ ਇੱਕ ਕਠਿਨਾਈ ਇਹ ਹੈ ਕਿ ਕੁਆਂਟਮ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪ੍ਰਭਾਵਾਂ ਤੋਂ ਸਿਰਫ ਪਲੈਂਕ ਸਕੇਲ ਦੇ ਨੇੜੇ ਹੀ ਸਪਸ਼ਟ ਬਣ ਜਾਣ ਦੀ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਦੂਰੀ ਦਿਆਂ ਲਫਜ਼ਾਂ ਵਿੱਚ ਓਸ ਪੈਮਾਨੇ ਤੋਂ ਬਹੁਤ ਸੂਖਮ ਪੈਮਾਨਾ ਹੈ (ਸਮਾਨਤਾ ਨਾਲ ਕਹਿੰਦੇ ਹੋਏ, ਐਨਰਜੀ ਦੇ ਪੈਮਾਨੇ ਉੱਤੇ ਬਹੁਤ ਵਿਸ਼ਾਲ) ਜੋ ਕਣਾਂ ਨੂੰ ਐਕਸਲਰੇਟ ਕਰਨ ਵਾਲੇ ਉੱਚ ਊਰਜਾ ਪਾਰਟੀਕਲ ਐਕਸਲਰੇਟਰਾਂ ਉੱਤੇ ਅੱਜਕੱਲ ਉਪਲਬਧ ਹੈ। ਨਤੀਜੇ ਵਜੋਂ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਇੱਕ ਪ੍ਰਮੁੱਖ ਤੌਰ ਤੇ ਸਿਧਾਂਤਿਕ ਕਠਿਨ ਉੱਦਮ ਹੈ, ਹਾਲਾਂਕਿ ਇਸ ਗੱਲ ਬਾਰੇ ਅਟਕਲਾਂ ਲਗਾਈਆਂ ਗਈਆਂ ਹਨ ਕਿ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਮੌਜੂਦਾ ਪ੍ਰਯੋਗਾਂ ਵਿੱਚ ਪਰਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਕਿਵੇਂ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀ ਹੈ।[7]
ਸੰਖੇਪ ਸਾਰਾਂਸ਼
ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਖੁੱਲੀਆਂ ਸਮੱਸਿਆਵਾਂ: ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਥਿਊਰੀ ਨੂੰ ਸੂਖਮ ਲੰਬਾਈ ਪੈਮਾਨਿਆਂ ਉੱਤੇ ਸਹੀ ਰੱਖਦੇ ਹੋਏ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ/ਗਰੈਵੀਟੇਸ਼ਨਲੌਰੰਟਜ਼ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨਾਂ
ਫੋਰਸ ਦੀ ਥਿਊਰੀ ਵਿੱਚ ਕਿਵੇਂ ਸਮਾਇਆ ਜਾ ਸਕਦਾ ਹੈ? ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਕੋਈ ਵੀ ਥਿਊਰੀ ਕਿਹੜੀਆਂ ਪੁਸ਼ਟੀ ਕਰਨ-ਯੋਗ ਭਵਿੱਖਬਾਣੀਆਂ ਬਣਾਉਂਦੀ ਹੈ? (ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਹੋਰ ਖੁੱਲੀਆਂ ਸਮੱਸਿਆਵਾਂ) |
ਸਾਰੇ ਊਰਜਾ ਪੈਮਾਨਿਆਂ ਉੱਤੇ ਇਹਨਾਂ ਥਿਊਰੀਆਂ ਨੂੰ ਇਕੱਠਿਆਂ ਬੰਦ ਕਰਨ ਵਿੱਚ ਆਉਂਦੀ ਕਠਿਨਾਈ ਵਿੱਚੋਂ ਜਿਆਦਾ ਕਠਿਨਾਈ ਵੱਖਰੀਆਂ ਮਾਨਤਾਵਾਂ ਤੋਂ ਆਉਂਦੀ ਹੈ ਜੋ ਇਹ ਥਿਊਰੀਆਂ ਬ੍ਰਹਿਮੰਡ ਕਿਵੇਂ ਕੰਮ ਕਰਦਾ ਹੈ ਬਾਬਤ ਬਣਾਉਂਦੀਆਂ ਹਨ। ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ, ਜੇਕਰ ਕਣਾਂ ਦੀ ਕਿਸੇ ਥਿਊਰੀ ਦੇ ਤੌਰ ਤੇ ਸਮਝੀ ਜਾਵੇ, ਤਾਂ ਇਹ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਫਲੈਟ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਜੜੀਆਂ ਹੋਈਆਂ ਕਣ ਫੀਲਡਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਗਰੈਵਿਟੀ ਨੂੰ ਸਪੇਸ-ਟਾਈਮ ਅੰਦਰਲੇ ਕਿਸੇ ਅਜਿਹੇ ਕਰਵੇਚਰ ਦੇ ਤੌਰ ਤੇ ਮਾਡਲਬੱਧ ਕਰਦੀ ਹੈ, ਜੋ ਓਦੋਂ ਬਦਲਦਾ ਰਹਿੰਦਾ ਹੈ ਜਦੋਂ ਕੋਈ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁੰਜ ਗਤੀਸ਼ੀਲ ਹੁੰਦਾ ਹੈ। ਇਤਿਹਾਸਿਕ ਤੌਰ ਤੇ, ਦੋ ਥਿਊਰੀਆਂ ਨੂੰ ਮਿਲਾਉਣ ਦਾ ਸਭ ਤੋਂ ਜਿਆਦਾ ਸਪੱਸ਼ਟ ਤਰੀਕਾ (ਜਿਵੇਂ ਗਰੈਵਿਟੀ ਨੂੰ ਸਰਲ ਤੌਰ ਤੇ ਕਿਸੇ ਹੋਰ ਕਣ ਫੀਲਡ ਵਾਂਗ ਵਰਤਣਾ) ਜਲਦੀ ਹੀ ਪੁਨਰ-ਮਾਨਕੀਕਰਨ (ਰੀਨੌਰਮਲਾਇਜ਼ੇਸ਼ਨ) ਸਮੱਸਿਆ ਵੱਲ ਭੱਜ ਤੁਰਦਾ ਹੈ। ਪੁਨਰ-ਮਾਨਕੀਕਰਨ ਦੀ ਪੁਰਾਣੇ-ਅੰਦਾਜ਼ ਦੀ ਸਮਝ ਵਿੱਚ, ਗਰੈਵਿਟੀ ਕਣ ਇੱਕ ਦੂਜੇ ਨੂੰ ਖਿੱਚਦੇ ਹੋ ਸਕਦੇ ਹਨ ਅਤੇ ਸਾਰੀਆਂ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਬਹੁਤ ਸਾਰੇ ਅਜਿਹੇ ਅਨੰਤ ਮੁੱਲਾਂ ਵਿੱਚ ਨਤੀਜੇ ਦਿੰਦੀਆਂ ਹਨ ਜਿਹਨਾਂ ਨੂੰ ਸਮਝਯੋਗ, ਸੀਮਤ ਨਤੀਜੇ ਦੇਣ ਵਾਸਤੇ ਗਣਿਤਿਕ ਤੌਰ ਤੇ ਅਸਾਨੀ ਨਾਲ ਰੱਦ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ । ਇਹ ਕੁਆਂਟਮ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਨਾਲ ਤੁਲਨਾ ਵਿੱਚ ਹੈ ਜਿੱਥੇ, ਸੀਰੀਜ਼ ਦੇ ਮੁੱਕ ਨਾ ਜਾਣ ਦਿੱਤਾ ਹੋਣ ਤੇ, ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਕਦੇ ਕਦੇ ਅਨੰਤ ਨਤੀਜਿਆਂ ਤੱਕ ਉਤਪੰਨ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਪਰ ਇਹ ਇੰਨੀ ਘੱਟ ਸੰਖਿਆ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ ਕਿ ਇਹਨਾਂ ਨੂੰ ਪੁਨਰ-ਮਾਨਕੀਕਰਨ ਰਾਹੀਂ ਮੁਕਾਇਆ ਨਹੀਂ ਜਾ ਸਕਦਾ । ਇੱਕ ਹੋਰ ਸੰਭਾਵਨਾ ਕਣਾਂ ਉੱਤੇ ਧਿਆਨ ਦੇਣ ਨਾਲੋਂ ਫੀਲਡਾਂ ਉੱਤੇ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਨਾ ਹੈ, ਜੋਬਹੁਤ ਹੀ ਸਪੈਸ਼ਲ ਸਪੇਸਟਾਈਮਾਂ ਅੰਦਰ ਕੁੱਝ ਫੀਲਡਾਂ ਨੂੰ ਲੱਛਣਬੱਧ ਕਰਨ ਦਾ ਸਿਰਫ ਇੱਕ ਰਸਤਾ ਹੈ।[4] ਇਹ ਅਨੁਕੂਲਤਾ ਬਾਬਤ ਚਿੰਤਾ ਨੂੰ ਮੁਕਾ ਦਿੰਦਾ ਹੈ, ਪਰ ਪੂਰਨ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਜਨਰਲ ਥਿਊਰੀ ਦੇ ਕਿਸੇ ਕੁਆਂਟਾਇਜ਼ ਕੀਤੇ ਵਰਜ਼ਨ ਵੱਲ ਲਿਜਾਂਦਾ ਨਹੀਂ ਦਿਸਦਾ ।
ਇੱਫੈਕਟਿਵ ਫੀਲਡ ਥਿਊਰੀਆਂ
ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਨੂੰ ਕਿਸੇ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਤੌਰ ਤੇ ਟ੍ਰੀਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰਭਾਵੀ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀਆਂ ਕਿਸੇ ਉੱਚ-ਊਰਜਾ ਕੱਟ-ਔਫ ਸਮੇਤ ਆਉਂਦੀਆਂ ਹਨ, ਜਿਸ ਤੋਂ ਪਰੇ, ਅਸੀਂ ਇਹ ਉਮੀਦ ਨਹੀਂ ਕਰਦੇ ਕਿ ਥਿਊਰੀ ਕੁਦਰਤ ਦੀ ਇੱਕ ਚੰਗੀ ਵਿਆਖਿਆ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦੀ ਹੈ। ਅਨੰਤ ਫੇਰ ਵਿਸ਼ਾਲ ਬਣ ਜਾਂਦੇ ਹਨ, ਪਰ ਸੀਮਤ ਮਾਤ੍ਰਾਵਾਂ ਇਸ ਸੀਮਤ ਕੱਟ-ਔਫ ਸਕੇਲ ਤੇ ਨਿਰਭਰ ਕਰਦੀਆਂ ਹੋਈਆਂ, ਅਜਿਹੀਆਂ ਪ੍ਰਤੀਕ੍ਰਿਆਵਾਂ ਨਾਲ ਜੁੜਦੀਆਂ ਹਨ ਜੋ ਬੁਨਿਆਦੀ ਕੱਟ-ਔਫ ਦੇ ਨਜ਼ਦੀਕ ਬਹੁਤ ਹੀ ਉੱਚ-ਊਰਜਾਵਾਂ ਸ਼ਾਮਿਲ ਕਰਦੀਆਂ ਹਨ। ਇਹ ਮਾਤ੍ਰਾਵਾਂ ਫੇਰ ਕਪਲਿੰਗ ਸਥਿਰਾਂਕਾਂ, ਅਤੇ ਥਿਊਰੀ ਦੀ ਬੁਨਿਆਦੀ ਕੱਟ-ਔਫ ਤੋਂ ਬਹੁਤ ਥੱਲੇ ਦੀਆੰ ਊਰਜਾਵਾਂ ਉੱਤੇ, ਕਿਸੇ ਵੀ ਮਨਚਾਹੀ ਸ਼ੁੱਧਤਾ ਤੱਕ ਦੇ, ਕਿਸੇ ਅਨੰਤ ਸਮੂਹ ਵਿੱਚ ਸੋਖੀਆਂ (ਅਲੋਪ ਕੀਤੀਆਂ) ਜਾ ਸਕਦੀਆਂ ਹਨ; ਉਚਿਤ ਕੁਆਂਟਮ-ਮਕੈਨੀਕਲ ਅਨੁਮਾਨ ਲਗਾਉਣ ਲਈ, ਸਿਰਫ ਇਹਨਾਂ ਕਪਲਿੰਗ ਸਥਿਰਾਂਕਾਂ ਦੀ ਇੱਕ ਸੀਮਤ ਸੰਖਿਆ ਨੂੰ ਹੀ ਨਾਪਣ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ। ਇਹੀ ਲੌਜਿਕ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਵਾਂਗ ਘੱਟ-ਊਰਜਾ ਵਾਲੇ ਪਾਈਔਨਾਂ ਦੀ ਉੱਚ ਤੌਰ ਤੇ ਸਫਲ ਥਿਊਰੀ ਵਾਸਤੇ ਵੀ ਫਿੱਟ ਬੈਠਦਾ ਹੈ। ਸੱਚਮੁੱਚ ਹੀ, ਗ੍ਰੈਵੀਟੋਨ-ਸਕੈਟ੍ਰਿੰਗ ਅਤੇ ਨਿਊਟਨ ਦੇ ਗ੍ਰੈਵੀਟੇਸ਼ਨ ਦੇ ਨਿਯਮ ਦੀ ਪਹਿਲੀ ਕੁਆਂਟਮ-ਮਕੈਨੀਕਲ ਸੋਧ ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਖੋਜੀ ਗਈ ਹੈ।[8] (ਭਾਵੇਂ ਇਹ ਇੰਨੀ ਅਤਿਸੂਖਮ ਹਨ ਕਿ ਹੋ ਸਕਦਾ ਹੈ ਅਸੀਂ ਇਹਨਾਂ ਨੂੰ ਕਦੇ ਵੀ ਨਾਪਣ ਦੇ ਯੋਗ ਨਹੀਂ ਹੋ ਸਕਦੇ) । ਦਰਅਸਲ, ਸਟੈਂਡਰਡ ਮਾਡਲ ਨਾਲੋਂ ਗਰੈਵਿਟੀ ਬਹੁਤ ਤਰੀਕੇ ਨਾਲ ਬਹੁਤ ਚੰਗੇਰੀ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਹੈ, ਕਿਉਂਕਿ ਇਹ ਪਲੈਂਕ ਸਕੇਲ ਉੱਤੇ ਅਪਣੇ ਕੱਟ-ਔਫ ਤੱਕ ਦੇ ਸਾਰੇ ਰਸਤਿਆਂ ਤੇ ਪ੍ਰਮਾਣਿਤ ਹੁੰਦੀ ਦਿਸਦੀ ਹੈ।
ਇਹ ਸਾਬਤ ਕਰਨ ਸਮੇਂ ਕਿ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਗਰੈਵਿਟੀ ਸੱਚਮੁੱਚ ਹੀ ਜਾਇਜ ਊਰਜਾਵਾਂ ਉੱਤੇ ਅਨੁਕੂਲ ਰਹਿੰਦੇ ਹਨ, ਇਹ ਸਪੱਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਗਰੈਵਿਟੀ ਦੀ ਸਾਡੀ ਪ੍ਰਭਾਵੀ ਕੁਆਂਟਮ ਥਿਊਰੀ ਦੇ ਬੁਨਿਆਦੀ ਕੱਟ-ਔਫ (ਜੋ ਆਮਤੌਰ ਤੇ, ਪਲੈਂਕ ਸਕੇਲ ਦੇ ਦਰਜੇ ਜਿੰਨਾ ਹੁੰਦਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ) ਦੇ ਨਜ਼ਦੀਕ ਜਾਂ ਉੱਪਰ, ਕੁਦਰਤ ਦਾ ਇੱਕ ਨਵਾਂ ਮਾਡਲ ਚਾਹੀਦਾ ਹੋਵੇਗਾ। ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ, ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਗਰੈਵਿਟੀ ਨੂੰ ਮਿਲਾਉਣ ਦੀ ਸਮੱਸਿਆ ਸਿਰਫ ਉੱਚ ਊਰਜਾਵਾਂ ਉੱਤੇ ਹੀ ਕੋਈ ਮਸਲਾ ਪੈਦਾ ਕਰਦੀ ਹੈ, ਅਤੇ ਚੰਗੀ ਤਰਾਂ ਕਿਸੇ ਸੰਪੂਰਨ ਤੌਰ ਤੇ ਨਵੀਂ ਕਿਸਮ ਦੇ ਮਾਡਲ ਦੀ ਮੰਗ ਕਰਦੀ ਹੈ।
ਉੱਚਤਮ ਊਰਜਾ ਪੈਮਾਨਿਆਂ ਲਈ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਥਿਊਰੀ
ਉੱਤਚਮ ਊਰਜਾ ਪੈਮਾਨਿਆਂ ਉੱਤੇ ਵੀ ਪ੍ਰਮਾਣਿਤ ਰਹਿਣ ਵਾਲੀ ਕਿਸੇ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਥਿਊਰੀ ਨੂੰ ਵਿਓਂਤਬੰਦ ਕਰਨ ਪ੍ਰਤਿ ਸਰਵ ਸਧਾਰਨ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਇਹ ਮੰਨ ਲੈਣਾ ਹੈ ਕਿ ਅਜਿਹੀ ਕੋਈ ਥਿਊਰੀ ਸਰਲ ਅਤੇ ਸ਼ਾਨਦਾਰ ਹੋਵੇਗੀ, ਅਤੇ, ਇਸੇ ਮੁਤਾਬਕ, ਸਮਰੂਪਤਾਵਾਂ ਅਤੇ ਕਿਸੇ ਸੁਵਿਧਾਜਨਕ, ਏਕੀਕ੍ਰਿਤ ਥਿਊਰੀ ਵਿੱਚ ਇਹਨਾਂ ਨੂੰ ਮਿਲਾਉਣ ਦੇ ਤਰੀਕੇ ਸੁਝਾਉਂਦੇ ਹੋ ਸਕਦੀਆਂ ਵਰਤਮਾਨ ਥਿਊਰੀਆਂ ਰਾਹੀਂ ਪ੍ਰਸਤਾਵਿਤ ਹੋਰ ਇਸ਼ਾਰਿਆਂ ਦਾ ਅਧਿਐਨ ਕਰਨ ਵਿੱਚ ਹੈ। ਇਸ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਨਾਲ ਇੱਕ ਸਮੱਸਿਆ ਇਹ ਹੈ ਕਿ ਇਹ ਅਗਿਆਤ ਰਹਿੰਦਾ ਹੈ ਕਿ ਕੀ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਸੱਚਮੁੱਚ ਹੀ ਕਿਸੇ ਸਰਲ ਅਤੇ ਸ਼ਾਨਦਾਰ ਥਿਊਰੀ ਸਮਾਨ ਹੋਵੇਗੀ, ਜਿਵੇਂ ਇਸਨੂੰ ਪ੍ਰਵੇਗ ਅਤੇ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕਸਾਰਤਾ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ, ਅਤੇ ਸਪੇਸਟਾਈਮ ਕਰਵੇਚਰ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਦੋਹਰੇ ਗੋਰਖਧੰਦਿਆਂ ਨੂੰ ਹੱਲ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।
ਬਹੁਤ ਉੱਚ ਊਰਜ ਅਤੇ ਸਪੇਸ ਦੇ ਬਹੁਤ ਘੱਟ ਅਯਾਮਾਂ ਦੇ ਮੇਲ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਵਾਲੀਆਂ ਸਮੱਸਿਆਵਾਂ ਸਮਝਣ ਲਈ ਅਜਿਹੀ ਕਿਸੇ ਥਿਊਰੀ ਦੀ ਜਰੂਰਤ ਹੈ, ਜਿਵੇਂ ਬਲੈਕ ਹੋਲਾਂ ਦਾ ਵਰਤਾਓ, ਅਤੇ ਬ੍ਰਹਿਮੰਡ ਦਾ ਮੁੱਢ।
ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ
ਗਰੈਵੀਟੋਨ
ਵਰਤਮਾਨ ਵਿੱਚ, ਸਿਧਾਂਤਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰਲੀਆਂ ਸਭ ਤੋਂ ਜਿਆਦਾ ਗਹਿਰੀਆਂ ਸਮੱਸਿਆਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਸਮੱਸਿਆ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਨੂੰ ਸੁਰਬੱਧ ਕਰਨਾ ਹੈ, ਜੋ ਗਰੈਵੀਟੇਸ਼ਨ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ, ਅਤੇ ਇਸਦਦੀਆਂ ਵਿਸ਼ਾਲ-ਪੈਮਾਨੇ ਦੀਆਂ ਬਣਤਰਾਂ (ਤਾਰੇ, ਗ੍ਰਹਿ, ਗਲੈਕਸੀਆਂ) ਪ੍ਰਤਿ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਸਮੇਤ ਐਪਲੀਕੇਸ਼ਨਾਂ ਹਨ, ਜੋ ਐਟੌਮਿਕ ਸਕੇਲ ਉੱਤੇ ਕ੍ਰਿਆਸ਼ੀਲ ਹੋਰ ਤਿੰਨ ਬੁਨਿਆਦੀ ਫੋਰਸਾਂ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਫੇਰ ਵੀ, ਸਮੱਸਿਆ ਜਰੂਰ ਹੀ ਸਹੀ ਸੰਦ੍ਰਭ ਵਿੱਚ ਸਾਹਮਣੇ ਰੱਖਣੀ ਚਾਹੀਦੀ ਹੈ। ਖਾਸ ਤੌਰ ਤੇ, ਇਸ ਪ੍ਰਸਿੱਧ ਦਾਅਵੇ ਤੋਂ ਵਿਰੁੱਧ ਕਿ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਬੁਨਿਆਦੀ ਤੌਰ ਤੇ ਅਨੁਕੂਲ ਨਹੀਂ ਹਨ, ਇਹ ਸਾਬਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਰਚਨਾ ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ, ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਕਰ ਰਹੇ ਸਿਧਾਂਤਿਕ ਸਪਿੱਨ-2 ਪੁੰਜਹੀਣ (ਗਰੈਵੀਟੋਨ ਨਾਮਕ) ਕਣਾਂ ਦੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਤੋਂ ਸ਼ਰਤੀਆ ਤੌਰ ਤੇ ਬਣਦੀ ਹੈ।[9][10][11][12][13] ਜਦੋਂਕਿ ਗ੍ਰੈਵੀਟੋਨਾਂ ਦੀ ਹੋਂਦ ਦਾ ਕੋਈ ਵੀ ਠੋਸ ਸਬੂਤ ਨਹੀਂ ਹੈ, ਤਾਂ ਪਦਾਰਥ ਦੀਆਂ ਕੁਆਂਟਾਇਜ਼ ਕੀਤੀਆਂ ਥਿਊਰੀਆਂ ਉਹਨਾਂ ਦੀ ਹੋਂਦ ਨੂੰ ਜਰੂਰੀ ਕਰ ਸਕਦੀਆਂ ਹਨ।[14]
ਇਸ ਥਿਊਰੀ ਦਾ ਸਮਰਥਨ ਇਹ [[ਨਿਰੀਖਣ] ] ਕਰਦਾ ਹੈ ਕਿ ਗਰੈਵਿਟੀ ਤੋਂ ਇਲਾਵਾ ਸਾਰੇ ਬੁਨਿਆਦੀ ਫੋਰਸ ਇੱਕ ਜਾਂ ਜਿਆਦਾ ਗਿਆਤ ਸੰਦੇਸ਼ਵਾਹਕ ਕਣ ਰੱਖਦੇ ਹਨ, ਜਿਸਨੇ ਰਿਸਰਚਰਾਂ ਨੂੰ ਇਹ ਮੰਨ ਲੈਣ ਵੱਲ ਪ੍ਰੇਰਣਾ ਦਿੱਤੀ ਹੈ ਕਿ ਘੱਟੋ-ਘੱਟ ਅਜਿਹਾ ਇੱਕ ਕਣ ਜਰੂਰ ਹੀ ਹੋਂਦ ਰੱਖਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ; ਉਹਨਾਂ ਨੇ ਓਸ ਪਰਿਕਲਪਿਤ ਕਣ ਦਾ ਨਾਮ ਗ੍ਰੈਵੀਟੋਨ ਰੱਖਿਆ ਹੈ। ਅਨੁਮਾਨਿਤ ਖੋਜ ਗ੍ਰੈਵੀਟੋਨ ਦੀ ਸ਼੍ਰੇਣੀਵੰਡ ਨੂੰ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਵਾਲੇ ਫੋਟੌਨ ਵਰਗੇ ਇੱਕ ਫੋਰਸ ਕਣ ਦੇ ਤੌਰ ਤੇ ਨਤੀਜਾ ਦੇਵੇਗੀ । 1970 ਤੋਂ ਬਾਦ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੀ ਕਿਸੇ ਏਕੀਕ੍ਰਿਤ ਥਿਊਰੀ ਦੀਆਂ ਕਈ ਸਵੀਕਾਰ ਕੀਤੀਆਂ ਗਈਆਂ ਧਾਰਨਾਵਾਂ ਗਰੈਵੀਟੋਨ ਦੀ ਹੋਂਦ ਮੰਨਦੀਆਂ ਹਨ, ਅਤੇ ਕੁੱਝ ਦਰਜੇ ਤੱਕ ਇਸ ਉੱਪਰ ਨਿਰਭਰ ਵੀ ਕਰਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਵਿੱਚ ਸਟ੍ਰਿੰਗ ਥਿਊਰੀ, ਸੁਪਰਸਟ੍ਰਿੰਗ ਥਿਊਰੀ, M-ਥਿਊਰੀ, ਅਤੇ ਲੂਪ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਸ਼ਾਮਿਲ ਹਨ। ਇਸਤਰਾਂ ਗਰੈਵੀਟੋਨਾਂ ਦੀ ਪਛਾਣ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਰਿਲੇਟੀਵਿਟੀ ਥਿਊਰੀ ਦਾ ਏਕਾ ਕਰਨ ਪ੍ਰਤਿ ਰਿਸਰਚ ਦੀਆਂ ਵਿਭਿੰਨ ਰੇਖਾਵਾਂ ਦੀ ਪ੍ਰਮਾਣਿਕਤਾ ਪ੍ਰਤਿ ਮਹੱਤਵਪੂਰਨ ਹੈ।
ਡਿਲੇਸ਼ਨ
ਡਿਲੇਸ਼ਨ ਨੇ ਅਪਣੀ ਪਹਿਲੀ ਦਿੱਖ ਕਾਲੂਜ਼ਾ-ਕਲੇਇਨ ਥਿਊਰੀ ਵਿੱਚ ਬਣਾਈ, ਜੋ ਇੱਕ ਪੰਜ-ਅਯਾਮੀ ਥਿਊਰੀ ਹੈ ਜੋ ਗਰੈਵੀਟੇਸ਼ਨ ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਦਾ ਮੇਲ ਕਰਦੀ ਹੈ। ਆਮਤੌਰ ਤੇ, ਇਹ ਸਟ੍ਰਿੰਗ ਥਿਊਰੀ ਵਿੱਚ ਦਿਸਦੀ ਹੈ। ਹੋਰ ਤਾਜ਼ਾ ਤੌਰ ਤੇ, ਫੇਰ ਵੀ, ਇਹ ਘੱਟ-ਅਯਾਮੀ ਕਈ-ਸ਼ਰੀਰ ਗਰੈਵਿਟੀ ਸਮੱਸਿਆ[15] ਪ੍ਰਤਿ ਕੇਂਦਰੀ ਬਣ ਗਈ ਹੈ, ਜੋ ਰੋਮੈਨ ਜੈਕਿਵ ਦੇ ਫੀਲਡ ਸਿਧਾਂਤਿਕ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ। ਇਹ ਪ੍ਰੇਰਣਾ ਇਸ ਤੱਥ ਤੋਂ ਪੈਦਾ ਹੋਈ ਸੀ ਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਕਿਸੇ ਕੋਵੇਰੀਅੰਟ N-ਬਾਡੀ ਸਿਸਟਮ ਦੇ ਮੈਟ੍ਰਿਕ ਵਾਸਤੇ, ਸੰਪੂਰਨ ਵਿਸ਼ਲੇਸ਼ਣਾਤਮਿਕ ਹੱਲ, ਪਕੜ ਵਿੱਚ ਨਾ ਆਉਣ ਵਾਲ਼ੇ ਸਾਬਤ ਹੋਏ ਹਨ। R=T ਥਿਊਰੀ[16] ਦੇ ਤੌਰ ਤੇ ਜਾਣੀ ਜਾਂਦੀ ਥਿਊਰੀ ਨੇ, ਸਮੱਸਿਆ ਨੂੰ ਸਰਲ ਕਰਨ ਲਈ, ਲੈਂਬਾਰਟ ਡਬਲੀਊ ਫੰਕਸ਼ਨ ਦੀ ਇੱਕ ਸਰਵ-ਸਧਾਰਨ-ਕਰਨ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਇੰਨਬਿੰਨ ਹੱਲ ਦੇਣ ਦੀ ਜਿਮੇਵਾਰੀ ਲਈ । ਇਹ ਵੀ ਖੋਜਿਆ ਗਿਆ ਕਿ (ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਰੇਖਾ ਗਣਿਤ ਤੋਂ ਵਿਓਂਤਬੰਦ) ਡਿਲੇਸ਼ਨ ਨੂੰ ਨਿਯੰਤ੍ਰਿਤ ਕਰਨ ਵਾਲੀ ਫੀਲਡ ਇਕੁਏਸ਼ਨ ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਸੀ, ਅਤੇ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ ਪ੍ਰਤਿ ਜਿਮੇਵਾਰ ਸੀ।[17]
ਇਸਤਰਾਂ, ਇੱਕ ਥਿਊਰੀ ਅਜਿਹੀ ਸੀ ਜੋ ਗਰੈਵਿਟੀ, ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ, ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪਰਸਪਰ ਕ੍ਰਿਆ ਦਾ ਮੇਲ ਕਰਦੀ ਸੀ, ਅਤੇ ਕਿਸੇ ਬੁਨਿਆਦੀ ਭੌਤਿਕੀ ਥਿਊਰੀ ਦੇ ਵਿਅੰਜਨ ਦੇਣ ਦਾ ਵਾਅਦਾ ਕਰਦੀ ਸੀ। ਇਹ ਗੱਲ ਜਰੂਰੀ ਤੌਰ ਤੇ ਧਿਆਨ ਦੇਣਯੋਗ ਹੈ ਕਿ ਇਸ ਨਤੀਜੇ ਨੇ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦਰਮਿਆਨ, ਪਹਿਲਾਂ ਤੋਂ ਅਗਿਆਤ ਅਤੇ ਪਹਿਲਾਂ ਤੋਂ ਮੌਜੂਦ, ਇੱਕ ਕੁਦਰਤੀ ਸੰਪਰਕ ਦਾ ਰਹੱਸ ਖੋਲਿਆ । ਕੁੱਝ ਸਮੇਂ ਲਈ, ਇਸ ਥਿਊਰੀ ਦੀ (3+1) ਅਯਾਮਾਂ ਪ੍ਰਤਿ ਇੱਕ ਜਨਰਲਾਇਜ਼ੇਸ਼ਨ ਅਸਪਸ਼ਟ ਰਹੀ । ਫੇਰ ਵੀ, ਅੱਠ ਨਿਰਦੇਸ਼ਾਂਕ ਸ਼ਰਤਾਂ ਅਧੀਨ (3+1) ਅਯਾਮਾਂ ਦੀ ਇੱਕ ਤਾਜ਼ਾ ਵਿਓਂਤਬੰਦੀ ਨੇ ਲੌਗਰਿਥਮਿਕ ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ [18] ਰਾਹੀਂ ਨਿਯੰਤ੍ਰਿਤ ਇੱਕ ਡਿਲੇਸ਼ਨ ਫੀਲਡ ਨਾਮਕ ਪਹਿਲਾਂ ਵਾਲੀ (1+1) ਅਯਾਮਾਂ ਵਾਲੀ ਇੱਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਪੈਦਾ ਕੀਤੀ, ਜੋ ਕੰਡੈਂਸਡ ਮੈਟਰ ਫਿਜ਼ਿਕਸ ਅਤੇ ਸੁਪਰਫਲਡਿਟੀ ਅੰਦਰ ਦੇਖੀ ਜਾਂਦੀ ਹੈ। ਫੀਲਡ ਸੀਮਕਰਨਾਂ ਸੱਚਮੁੱਚ ਹੀ ਅਜਿਹੀ ਜਨਰਲਾਇਜ਼ੇਸ਼ਨ ਪ੍ਰਯਿ ਜਿਮੇਵਾਰ ਹਨ (ਜਿਵੇਂ ਕਿਸੇ ਇੱਕ-ਗ੍ਰੈਵੀਟੋਨ ਪ੍ਰਕ੍ਰਿਆ ਦੀ ਸ਼ਮੂਲੀਅਤ ਨਾਲ ਦਿਖਾਇਆ ਜਾਂਦਾ ਹੈ[19]) ਅਤੇ d ਡਾਇਮੈਨਸ਼ਨਾਂ ਵਿੱਚ ਸਹੀ ਨਿਊਟੋਨੀਅਨ ਹੱਦ ਪੈਦਾ ਕਰਦੀ ਹੈ ਪਰ ਸਿਰਫ ਤਾਂ ਜੇਕਰ ਇੱਕ ਡਿਲੇਸ਼ਨ ਨੂੰ ਸ਼ਾਮਿਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹੋਰ ਅੱਗੇ, ਹਿਗਜ਼ ਬੋਸੌਨ ਅਤੇ ਡਿਲੇਸ਼ਨ ਦਰਮਿਆਨ ਸਪੱਸ਼ਟ ਇੰਨਬਿੰਨਤਾ ਦੇ ਨਜ਼ਰੀਏ ਤੋਂ, ਨਤੀਜੇ ਹੋਰ ਵੀ ਜਿਆਦਾ ਕਸ਼ਟ ਦੇਣ ਵਾਲੇ ਬਣ ਜਾਂਦੇ ਹਨ।[20] ਫੇਰ ਵੀ, ਇਹਨਾਂ ਦਿ ਕਣਾਂ ਦਰਮਿਆਨ ਸਬੰਧ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਹੋਰ ਪ੍ਰਯੋਗਾਤਮਿਕਤਾ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ। ਕਿਉਂਕਿ ਇਹ ਥਿਊਰੀ ਗਰੈਵੀਟੇਸ਼ਨਲ, ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਅਤੇ ਕੁਆਂਟਮ ਪ੍ਰਭਾਵਾਂ ਦਾ ਮੇਲ ਕਰ ਸਕਦੀ ਹੈ, ਇਸਲਈ ਇਹਨਾਂ ਦਾ ਮੇਲ ਸੰਭਾਵੀ ਤੌਰ ਤੇ ਥਿਊਰੀ ਨੂੰ, ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ ਰਾਹੀਂ, ਅਤੇ ਸ਼ਾਇਦ, ਪ੍ਰਯੋਗਿਕ ਤੌਰ ਤੇ ਸਾਬਤ ਕਰਨ ਦੇ ਅਰਥਾਂ ਵੱਲ ਲਿਜਾਂਦਾ ਹੈ।
ਗਰੈਵਿਟੀ ਦੀ ਗੈਰ-ਪੁਨਰ-ਮਾਨਕੀਕਰਨ-ਯੋਗਤਾ
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ, ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਵਾਂਗ, ਇੱਕ ਕਲਾਸੀਕਲ ਫੀਲਡ ਥਿਊਰੀ ਹੈ। ਇਹ ਉਮੀਦ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ ਕਿ, ਜਿਵੇਂ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਨਾਲ ਹੁੰਦਾ ਹੈ, ਉਵੇਂ ਹੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਵੀ ਇੱਕ ਸਬੰਧਤ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਰੱਖਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ।
ਫੇਰ ਵੀ, ਗਰੈਵਿਟੀ ਪਰਚਰਬੇਟਿਵ ਤੌਰ ਤੇ ਗੈਰ-ਪੁਨਰ-ਮਾਨਕੀਕਰਨਯੋਗ ਹੈ।[21][22] ਵਿਸ਼ੇ ਦੀ ਇਸ ਸਮਝ ਮੁਤਾਬਿਕ ਕਿਸੇ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਲਈ ਚੰਗੀ ਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਹੋਣ ਵਾਸਤੇ, ਇਹ ਅਸਿੰਪਟੋਟਿਕ ਤੌਰ ਤੇ ਸੁਤੰਤਰ ਜਾਂ ਅਸਿੰਪਟੋਟਿਕ ਤੌਰ ਤੇ ਸੁਰੱਖਿਅਤ ਹੋਣੀ ਲਾਜ਼ਮੀ ਹੈ। ਥਿਊਰੀ ਜਰੂਰ ਹੀ ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ ਸੀਮਤ ਤੌਰ ਤੇ ਕਈ ਮਾਪਦੰਡਾਂ ਦੀ ਕਿਸੇ ਪਸੰਦ ਰਾਹੀਂ ਲੱਛਣਬੱਧ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ, ਜੋ, ਸਿਧਾਂਤ ਮੁਤਾਬਿਕ, ਪ੍ਰਯੋਗ ਰਾਹੀਂ ਸੈੱਟ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕੁਆਂਟਮ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਅੰਦਰ, ਇਹ ਮਾਪਦੰਡ ਇਲੈਕਟ੍ਰੌਨ ਦਾ ਚਾਰਜ ਅਤੇ ਪੁੰਜ ਹੁੰਦੇ ਹਨ, ਜਿਵੇਂ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਊਰਜਾ ਪੈਮਾਨੇ ਉੱਤੇ ਨਾਪੇ ਜਾਂਦੇ ਹਨ।
ਦੂਜੇ ਪਾਸੇ, ਗਰੈਵਿਟੀ ਨੂੰ ਕੁਆਂਟਾਇਜ਼ ਕਰਨ ਵਿੱਚ, ਪਰਚਰਬੇਸ਼ਨ ਥਿਊਰੀ ਅੰਦਰ, ਅਨੰਤ ਤੌਰ ਤੇ ਕਈ ਸੁਤੰਤਰ ਮਾਪਦੰਡ (ਉਲਟ-ਸ਼ਬਦ ਕੋਐਫੀਸ਼ੀਐਂਟ) ਥਿਊਰੀ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਲਈ ਚਾਹੀਦੇ ਹਨ। ਉਹਨਾਂ ਮਾਪਦੰਡਾਂ ਦੀ ਕਿਸੇ ਦਿੱਤੀ ਹੋਣੀ ਚੋਣ ਤੇ, ਥਿਊਰੀ ਬਾਰੇ ਸਮਝ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਪਰ ਕਿਉਂਕਿ ਹਰੇਕ ਮਾਪਦੰਡ ਦੇ ਮੁੱਲਾਂ ਨੂੰ ਸਹੀ ਕਰਨ ਵਾਸਤੇ ਅਨੰਤ ਪ੍ਰਯੋਗ ਕਰਨੇ ਅਬੰਭਵ ਹੁੰਦੇ ਹਨ, ਇਸਲਈ ਇਹ ਤਰਕ ਕੀਤਾ ਗਿਆ ਹੈ ਕਿ, ਪਰਚਰਬੇਸ਼ਨ ਥਿਊਰੀ ਅੰਦਰ, ਕੋਈ ਅਰਥ-ਭਰਪੂਰ ਭੌਤਿਕੀ ਥਿਊਰੀ ਨਹੀਂ ਹੋ ਸਕਦੀ:
- ਘੱਟ ਊਰਜਾਵਾਂ ਉੱਤੇ, ਪੁਨਰ-ਮਾਨਕੀਕਰਨ ਗਰੁੱਪ ਦਾ ਤਰਕ ਸਾਨੂੰ ਦੱਸਦਾ ਹੈ ਕਿ, ਇਹਨਾਂ ਅਨੰਤ ਤੌਰ ਤੇ ਕਈ ਮਾਪਦੰਡਾਂ ਦੀਆਂ ਅਗਿਆਤ ਪਸੰਦਾਂ ਤੋਂ ਇਲਾਵਾ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਆਈਨਸਟਾਈਨ ਦੀ ਆਮ ਥਿਊਰੀ ਨੂੰ ਘਟਾ ਦੇਵੇਗੀ ।
- ਦੂਜੇ ਪਾਸੇ, ਜੇਕਰ ਅਸੀਂ ਬਹੁਤ ਉੱਚ ਊਰਜਾਵਾਂ ਖੋਜ ਸਕਦੇ ਜਿੱਥੇ ਕੁਆਂਟਮ ਪ੍ਰਭਾਵ ਕਬਜ਼ਾ ਕਰ ਲੈਂਦੇ ਹਨ, ਤਾਂ ਅਨੰਤ ਤੌਰ ਤੇ ਕਈ ਅਗਿਆਤ ਮਾਪਦੰਡਾਂ ਵਿੱਚੋਂ ਹਰੇਕ ਮਾਪਦੰਡ ਮਹੱਤਵਪੂਰਨ ਬਣਨਾ ਸ਼ੁਰੂ ਹੋ ਜਾਵੇਗਾ, ਅਤੇ ਅਸੀਂ ਕੁੱਲ ਮਿਲਾ ਕੇ ਕੋਈ ਵੀ ਅਨੁਮਾਨ ਨਹੀਂ ਲਗਾ ਸਕਾਂਗੇ ।
ਜੇਕਰ ਅਸੀਂ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਨੂੰ ਕਿਸੇ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਤੌਰ ਤੇ ਵਰਤਦੇ ਹਾਂ, ਤਾਂ ਇਸ ਸਮੱਸਿਆ ਦਾ ਇੱਕ ਹੱਲ ਮਿਲ ਜਾਂਦਾ ਹੈ। ਯਾਨਿ ਕਿ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਅਰਥ-ਭਰਪੂਰ ਥਿਊਰੀ (ਜੋ ਸਮਝ ਵਿੱਚ ਆਉਂਦੀ ਹੈ ਅਤੇ ਸਭ ਊਰਜਾ ਲੈਵਲਾਂ ਉੱਤੇ ਅਨੁਮਾਨਯੋਗ ਹੈ) ਤੋਂ ਜਨਮਜਾਤ ਤੌਰ ਤੇ ਭਾਵ ਹੈ ਕੋਈ ਗਹਿਰਾ ਸਿਧਾਂਤ ਜੋ ਅਬੰਤ ਤੌਰ ਤੇ ਕਈ ਅਗਿਆਤ ਮਾਪਦੰਡਾਂ ਨੂੰ ਇੱਕ ਸੀਮਤ ਸੰਖਿਆ ਵਿੱਚ ਸੰਖੇਪ ਕਰ ਦਿੰਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਫੇਰ ਨਾਪਿਆ ਜਾ ਸਕਦਾ ਹੈ:
- ਇੱਕ ਸੰਭਾਵਨਾ ਇਹ ਹੈ ਕਿ ਨੌਰਮਲ ਪਰਚਰਬੇਸ਼ਨ ਥਿਊਰੀ ਥਿਊਰੀ ਦੀ ਪੁਨਰ-ਮਾਨਕੀਕਰਨਯੋਗਤਾ ਪ੍ਰਤਿ ਕੋਈ ਭਰੋਸੇਮੰਦ ਮਾਰਗ-ਦਰਸ਼ਕ ਨਹੀਂ ਹੈ, ਅਤੇ ਇਹ ਕਿ ਗਰੈਵਿਟੀ ਵਾਸਤੇ ਇੱਕ UV ਫਿਕਸ ਕੀਤੇ ਬਿੰਦੂ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਇਹ ਗੈਰ-ਪਰਚਰਬੇਟਿਵ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦਾ ਇੱਕ ਸਵਾਲ ਹੈ, ਇਸਲਈ ਕੋਈ ਭਰੋਸੇਮੰਦ ਉੱਤਰ ਖੋਜਣਾ ਕਠਿਨ ਹੁੰਦਾ ਹੈ, ਪਰ ਕੁੱਝ ਲੋਕ ਅਜੇ ਵੀ ਇਸ ਵਿਕਲਪ ਦਾ ਪਿੱਛਾ ਕਰਦੇ ਹਨ।
- ਇੱਕ ਹੋਰ ਸੰਭਾਵਨਾ ਇਹ ਹੁੰਦੀ ਹੈ ਕਿ, ਨਵੀਨ ਅਣਖੋਜੇ ਸਮਰੂਪਤਾ ਸਿਧਾਂਤ ਹੁੰਦੇ ਹਨ ਜੋ ਮਾਪਦੰਡਾਂ ਤੇ ਰੋਕ ਲਗਾ ਕੇ ਉਹਨਾਂ ਨੂੰ ਕਿਸੇ ਸੀਮਤ ਸੈੱਟ ਤੱਕ ਸੰਖੇਪ ਕਰ ਦਿੰਦੇ ਹਨ। ਇਹੀ ਤਰੀਕਾ ਸਟ੍ਰਿੰਗ ਥਿਊਰੀ ਰਾਹੀਂ ਅਪਣਾਇਆ ਗਿਆ ਹੈ, ਜਿੱਥੇ ਸਟ੍ਰਿੰਗ ਦੀਆਂ ਸਭ ਐਕਸਾਈਟੇਸ਼ਨਾਂ ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ ਅਪਣੇ ਆਪ ਨੂੰ ਨਵੀਨ ਸਮਰੂਪਤਾਵਾਂ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਗਟ ਕਰਦੀਆਂ ਹਨ।
ਇੱਕ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਤੌਰ ਤੇ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ
ਕਿਸੇ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਅੰਦਰ, ਸਾਰੇ ਪਰ ਕਿਸੇ ਗੈਰ-ਪੁਨਰ-ਮਾਨਕੀਕਰਨਯੋਗ ਥਿਊਰੀ ਅੰਦਰਲੇ ਪਹਿਲੇ ਕੁੱਝ ਮਾਪਦੰਡਾਂ ਦੇ ਸੀਮਤ ਸੈੱਟ ਵਿਸ਼ਾਲ ਊਰਜਾ ਪੈਮਾਨਿਆਂ ਰਾਹੀਂ ਦਬਾ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਇਸ ਕਰਕੇ ਉਦੋਂ ਰੱਦ ਕਰ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ ਜਦੋਂ ਘੱਟ-ਊਰਜਾ ਪ੍ਰਭਾਵਾਂ ਦਾ ਗੁਣਨਫਲ=ਹਿਸਾਬ ਲਗਾਇਆ ਜਾਂਦਾ ਹੈ। ਇਸਤਰਾਂ, ਘੱਟੋ-ਘੱਟ ਘੱਟ-ਊਰਜਾ ਖੇਤਰ ਅੰਦਰ, ਮਾਡਲ ਸੱਚਮੁੱਚ ਹੀ ਇੱਕ ਅਨੁਮਾਨਾਤਮਿਕ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਹੁੰਦਾ ਹੈ।[8] (ਘੱਟ-ਊਰਜਾ ਪਾਈਔਨਾਂ ਦੀ ਬਹੁਤ ਹੀ ਮਿਲਦੀ ਜੁਲਦੀ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਵਾਸਤੇ ਇੱਕ ਬਹੁਤ ਹੀ ਮਿਲਦੀ ਜੁਲਦੀ ਪ੍ਰਸਥਿਤੀ ਮਿਲਦੀ ਹੈ) ਹੋਰ ਅੱਗੇ, ਕਈ ਸਿਧਾਂਤ ਵਿਗਿਆਨੀ ਸਹਿਮਤ ਹੁੰਦੇ ਹਨ ਕਿ ਇੱਥੋਂ ਤੱਕ ਕਿ ਸਟੈਂਡਰਡ ਮਾਡਲ ਨੂੰ ਸੱਚਮੁੱਚ ਹੀ ਇੱਕ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਤੌਰ ਤੇ ਸਮਝਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ, ਜਿੱਥੇ ਗੈਰ-ਪੁਨਰ-ਮਾਨਕੀਕਰਯੋਗ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਵਿਸ਼ਾਲ ਊਰਜਾ ਪੈਮਾਨਿਆਂ ਰਾਹੀਂ ਦਬਾ ਦਿੱਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਅਤੇ ਜਿਹਨਾਂ ਦੇ ਪ੍ਰਭਾਵ ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਯੋਗਿਕ ਤੌਰ ਤੇ ਨਿਰੀਖਤ ਨਹੀਂ ਕੀਤੇ ਗਏ ਹਨ।
ਤਾਜ਼ਾ ਕੰਮ[8] ਨੇ ਦਿਖਾਇਆ ਹੈ ਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨੂੰ ਕਿਸੇ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਤੌਰ ਤੇ ਸਮਝਣ ਨਾਲ, ਸਾਚਮੁੱਚ ਹੀ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਲਈ ਘੱਟੋ-ਘੱਟ ਘੱਟ-ਊਰਜਾ ਵਰਤਾਰਿਆਂ ਲਈ ਤਰਕਸੰਗਤ ਅਨੁਮਾਨ ਲਗਾਏ ਜਾ ਸਕਦੇ ਹਨ। ਇੱਕ ਉਦਾਹਰਨ ਕਲਾਸੀਕਲ ਨਿਊਟੋਨੀਅਨ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਂਸ਼ਲ ਦੀ ਦੋ ਪੁੰਜਾਂ ਦਰਮਿਆਨ ਸੂਖਮ ਪਹਿਲੇ ਦਰਜੇ ਦੇ ਕੁਆਂਟਮ-ਮਕੈਨੀਕਲ ਸੋਧ ਦੀ ਚੰਗੀ ਤਰਾਂ ਗਿਆਤ ਕੈਲਕੁਲੇਸ਼ਨ ਹੈ।
ਸਪੇਸਟਾਈਮ ਪਿਛੋਕੜ ਨਿਰਭਰਤਾ
ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਇੱਕ ਬੁਨਿਆਦੀ ਸਬਕ ਇਹ ਹੈ ਕਿ ਇਸ ਵਿੱਚ ਕੋਈ ਫਿਕਸ ਕੀਤਾ ਗਿਅ ਸਪੇਸਟਾਈਮ ਬੇਕਗ੍ਰਾਊਂਡ ਨਹੀਂ ਹੁੰਦਾ, ਜਿਵੇਂ ਨਿਊਟੋਨੀਅਨ ਮਕੈਨਿਕਸ ਅਤੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਪਾਇਆ ਜਾਂਦਾ ਹੈ; ਸਪੇਸਟਾਈਮ ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਡਾਇਨਾਮਿਕ ਹੁੰਦੀ ਹੈ। ਜਦੋਂਕਿ ਸਿਧਾਂਤ ਮੁਤਾਵਿਕ ਹਜ਼ਮ ਕਰਨਾ ਅਸਾਨ ਹੈ, ਫੇਰ ਵੀ ਇਹ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਬਾਬਤ ਸਮਝਣ ਲਈ ਕਠਿਨਤਮ ਵਿਚਾਰ ਹੈ, ਅਤੇ ਇਸਦੇ ਅਸਰ ਮਹੱਤਵਪੂਰਨ ਹਨ ਅਤੇ ਪੂਰੀ ਤਰਾਂ ਫਰੋਲੇ ਨਹੀਂ ਗਏ ਹਨ, ਇੱਥੋਂ ਤੱਕ ਕਿ ਕਲਾਸੀਕਲ ਲੈਵਲ ਤੇ ਵੀ ਅਜਿਹਾ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਕਿਸੇ ਹੱਦ ਤੱਕ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨੂੰ ਕਿਸੇ ਰਿਲੇਸ਼ਨਲ ਥਿਊਰੀ ਹੁੰਦੀ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ,[23] ਜਿਸ ਵਿੱਚ, ਇੱਕੋ ਇੱਕ ਭੌਤਿਕੀ ਤੌਰ ਤੇ ਸਬੰਧਤ ਜਾਣਕਾਰੀ ਹੀ ਸਪੇਸਟਾਈਮ ਅੰਦਰਲੀਆਂ ਵੱਖਰੀਆਂ ਘਟਨਾਵਾਂ ਦਰਮਿਆਨ ਸਬੰਧ ਹੁੰਦੀ ਹੈ।
ਦੂਜੇ ਪਾਸੇ, ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਪਣੀ ਸਮਝ ਤੋਂ ਲੈ ਕੇ, ਕਿਸੇ ਫਿਕਸ ਕੀਤੇ (ਗੈਰ-ਡਾਇਨਾਮਿਕ) ਬੈਕਗ੍ਰਾਊਂਡ ਬਣਤਰ ਉੱਤੇ ਨਿਰਭਰ ਰਿਹਾ ਹੈ। ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਮਾਮਲੇ ਅੰਦਰ, ਸਮਾਂ ਦਿੱਤਾ ਗਿਆ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਹ ਡਾਇਨਾਮਿਕ ਨਹੀਂ ਹੁੰਦਾ, ਜਿਵੇਂ ਨਿਊਟੋਨੀਅਨ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਅੰਦਰ ਹੁੰਦਾ ਹੈ। ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਅੰਦਰ, ਜਿਵੇਂ ਕਲਾਸੀਕਲ ਫੀਲਡ ਥਿਊਰੀ ਅੰਦਰ ਹੁੰਦਾ ਹੈ, ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਥਿਊਰੀ ਦਾ ਫਿਕਸ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਬੈਕਗ੍ਰਾਊਂਡ ਹੁੰਦਾ ਹੈ।
ਸਟਰਿੰਗ ਥਿਊਰੀ
ਸਟਰਿੰਗ ਥਿਊਰੀ ਨੂੰ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦੀ ਇੱਕ ਜਨਰਲਾਇਜ਼ੇਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਿੱਥੇ ਬਿੰਦੂ ਕਣਾਂ ਦੇ ਸਥਾਨ ਉੱਤੇ, ਸਟ੍ਰਿੰਗ-ਵਰਗੀਆਂ ਚੀਜ਼ਾਂ ਕਿਸੇ ਫਿਕਸ ਕੀਤੇ ਗਏ ਸਪੇਸਟਾਈਮ ਬੈਕਗ੍ਰਾਊਂਡ ਅੰਦਰ ਸੰਚਾਰਿਤ ਹੁੰਦੀਆਂ ਹਨ, ਭਾਵੇਂ ਬੰਦ ਸਟ੍ਰਿੰਗਾਂ ਵਿਚਕਾਰ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਸਪੇਸ-ਟਾਈਮ ਨੂੰ ਇੱਕ ਡਾਇਨਾਮਿਕਲ ਤਰੀਕੇ ਵਿੱਚ ਪੈਦਾ ਕਰਦੀਆਂ ਹਨ।
ਬੇਸ਼ੱਕ ਸਟਰਿੰਗ ਥਿਊਰੀ ਦਾ ਮੁੱਢ ਕੁਆਰਕ ਕਨਫਾਈਨਮੈਂਟ ਦੇ ਅਧਿਐਨ ਵਿੱਚ ਹੈ, ਨਾ ਕਿ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੇ ਅਧਿਐਨ ਵਿੱਚ, ਫੇਰ ਵੀ ਇਹ ਜਲਦੀ ਹੀ ਖੋਜ ਲਿਆ ਗਿਆ ਸੀ ਕਿ, ਸਟ੍ਰਿੰਗ ਸਪੈਕਟ੍ਰਮ ਗਰੈਵੀਟੋਨ ਰੱਖਦਾ ਹੈ, ਅਤੇ ਸਟ੍ਰਿੰਗਾਂ ਦੇ ਕੁੱਝ ਕੰਪਨ ਮੋਡਾਂ ਦੀ ਕੰਡੈਂਸੇਸ਼ਨ ਮੂਲ ਬੈਕਗ੍ਰਾਊਂਡ ਦੀ ਇੱਕ ਸੋਧ ਪ੍ਰਤਿ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ। ਇਸ ਸਮਝ ਮੁਤਾਬਿਕ, ਸਟ੍ਰਿੰਗ ਪਰਚਰਬੇਸ਼ਨ ਥਿਊਰੀ ਇੰਨਬਿੰਨ ਓਹ ਲੱਛਣ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕਰਦੀ ਹੈ ਜੋ ਅਸਿੰਪਟੋਟਿਕਾਂ ਉੱਤੇ ਇੱਕ ਤਾਕਤਵਰ ਨਿਰਭਰਤਾ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕਰ ਸਕਣ ਵਾਲੀ ਕਿਸੇ ਪਰਚਰਬੇਸ਼ਨ ਥਿਊਰੀ ਤੋਂ ਕੋਈ ਉਮੀਦ ਕਰ ਸਕਦਾ ਹੈ (ਜਿਵੇਂ ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, AdS/CFT ਮੇਲਜੋਲ ਵਿੱਚ ਦੇਖਿਆ ਗਿਆ ਹੈ) ਜੋ ਬੈਕਗ੍ਰਾਊਂਡ ਨਿਰਭਰਤਾ ਦੀ ਇੱਕ ਕਮਜ਼ੋਰ ਕਿਸਮ ਹੁੰਦੀ ਹੈ।
ਪਿਛੋਕੜ ਸੁਤੰਤਰ ਥਿਊਰੀਆਂ
ਇੱਕ ਬੈਕਗ੍ਰਾਊਂਡ-ਨਿਰਭਰ ਕੁਆਂਟਮ ਥਿਊਰੀ ਨੂੰ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕਰਨ ਪ੍ਰਤਿ ਯਤਨ ਦਾ ਫਲ ਲੂਪ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਹੈ।
ਟੌਪੌਲੌਜੀਕਲ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਬੈਕਗ੍ਰਾਊਂਡ-ਸੁਤੰਤਰ ਕੁਆਂਟਮ ਥਿਊਰੀ ਦੀ ਇੱਕ ਉਦਾਹਰਨ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦੀ ਹੈ, ਪਰ ਅਜ਼ਾਦੀ ਦੀਆਂ ਕਿਸੇ ਸਥਾਨਿਕ ਡਿਗਰੀਆਂ ਨਾਲ ਨਹੀਂ ਕਰਦੀ, ਅਤੇ ਸਿਰਫ ਸੀਮਤ ਤੌਰ ਤੇ ਸੰਸਾਰਿਕ ਤੌਰ ਤੇ ਅਜ਼ਾਦੀ ਦੀਆਂ ਕਈ ਡਿਗਰੀਆਂ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦੀ ਹੈ। ਇਹ 3+1 ਅਯਾਮਾਂ ਅੰਦਰ ਗਰੈਵਿਟੀ ਨੂੰ ਦਰਸਾਉਣ ਲਈ ਕਾਫੀ ਨਹੀਂ ਹੈ, ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਮੁਤਾਬਿਕ ਅਜ਼ਾਦੀ ਦੀਆਂ ਲੋਕਲ ਡਿਗਰੀਆਂ ਵਾਲੀ ਹੁੰਦੀ ਹੈ। ਫੇਰ ਵੀ, ਗਰੈਵਿਟੀ ਇੱਕ ਟੌਪੌਲੌਜੀਕਲ ਫੀਲਡ ਥਿਊਰੀ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਇਹ ਸਪਿੱਨ ਨੈਟਵਰਕਾਂ ਸਮੇਤ ਕਈ ਵੱਖਰੇ ਤਰੀਕਿਆਂ ਵਿੱਚ ਸਫਲਤਾਪੂਰਵਕ ਕੁਆਂਟਾਇਜ਼ ਕੀਤੀ ਗਈ ਹੈ।
ਅਰਧ-ਕਲਾਸੀਕਲ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ
ਵਕਰਿਤ (ਗੈਰ-ਮਿੰਕੋਵਸਕੀਅਨ) ਬੈਕਗ੍ਰਾਊਂਡਾਂ ਉੱਤੇ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ, ਜਦੋਂਕਿ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਸੰਪੂਰਨ ਕੁਆਂਟਮ ਥਿਊਰੀ ਨਹੀਂ ਹੈ, ਨੇ ਕਈ ਵਾਅਦਾ ਕਰਨ ਵਾਲੇ ਅਰੰਭਿਕ ਨਤੀਜੇ ਦਿਖਾਏ ਹਨ। 20ਵੀਂ ਦੇ ਸ਼ੁਰੂਆਤੀ ਹਿੱਸੇ (ਜਦੋਂ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨੂੰ ਕਲਾਸੀਕਲ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡਾਂ ਵਿੱਚ ਲੈਂਦੇ ਸਨ) ਅੰਦਰ ਕੁਆਂਟਮ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਦੇ ਵਿਕਾਸ ਪ੍ਰਤਿ ਇੱਕ ਤੁੱਲ ਰਸਤੇ ਅੰਦਰ, ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦੀ ਕਿਸੇ ਵਕਰਿਤ ਬੈਕਗ੍ਰਾਊਂਡ ਉੱਤੇ ਵਿਚਾਰ ਨੇ, ਬਲੈਕ ਹੋਲ ਰੇਡੀਏਸ਼ਨ ਵਰਗੇ ਅਨੁਮਾਨਾਂ ਦੀ ਪ੍ਰੇਰਣਾ ਦਿੱਤੀ ।
ਅਨਰੂਹ ਪ੍ਰਭਾਵ ਵਰਗੇ ਵਰਤਾਰੇ, ਜਿਹਨਾਂ ਵਿੱਚ ਕਣ ਕੁੱਝ ਪ੍ਰਵੇਗਿਤ ਫ੍ਰੇਮਾਂ ਅੰਦਰ ਜਹੀ ਮੌਜੂਦ ਹੁੰਦੇ ਹਨ, ਪਰ ਠਹਿਰੀਆਂ ਹੋਈਆਂ (ਸਟੇਸ਼ਨਰੀ) ਫ੍ਰੇਮਾਂ ਵਿੱਚ ਮੌਜੂਦ ਨਹੀਂ ਹੁੰਦੇ, ਓਦੋਂ ਕੋਈ ਕਠਿਨਾਈ ਨਹੀਂ ਦਿਖਾਉਂਦੇ ਜਦੋਂ ਕਿਸੇ ਵਕਰਿਤ ਬੈਕਗ੍ਰਾਊਂਡ ਉੱਤੇ ਵਿਚਾਰੇ ਜਾਂਦੇ ਹਨ (ਅਨਰੂਹ ਪ੍ਰਭਾਵ ਫਲੈਟ ਮਿੰਕੋਵਸਕੀਅਨ ਬੈਕਗ੍ਰਾਊਂਡਾਂ ਅੰਦਰ ਵੀ ਵਾਪਰਦਾ ਹੈ)। ਵੈਕੱਮ ਅਵਸਥਾ ਘੱਟ ਤੋਂ ਘੱਟ ਊਰਜਾ ਵਾਲੀ ਅਵਸਥਾ ਹੁੰਦੀ ਹੈ (ਅਤੇ ਕਣ ਰੱਖ ਵੀ ਸਕਦੀ ਹੈ ਅਤੇ ਨਹੀਂ ਵੀ ਰੱਖਦੀ ਹੋ ਸਕਦੀ)।
ਇੱਕ ਹੋਰ ਜਿਆਦਾ ਸੰਪੂਰਨ ਚਰਚਾ ਲਈ ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦੇਖੋ ।
ਵਕਤ ਦੀ ਸਮੱਸਿਆ
ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦਾ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਮੇਲ ਕਰਨ ਵਿੱਚ ਇੱਕ ਧਾਰਨਾਤਮਿਕ ਕਠਿਨਾਈ ਇਹਨਾਂ ਦੋ ਫ੍ਰੇਮਵਰਕਾਂ ਅੰਦਰ ਸਮੇਂ ਦੀ ਵਿਰੋਧੀ ਭੂਮਿਕਾ ਤੋਂ ਪੈਦਾ ਹੁੰਦੀ ਹੈ। ਕੁਆਂਟਮ ਥਿਊਰੀਆਂ ਅੰਦਰ, ਸਮਾਂ ਇੱਕ ਸੁਤੰਤਰ ਬੈਕਗ੍ਰਾਊਂਡ ਦੇ ਤੌਰ ਤੇ ਰੋਲ ਅਦਾ ਕਰਦਾ ਹੈ ਜਿਸਦੇ ਰਾਹੀਂ, ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਦੀਆਂ ਅਤਿਸੂਖਮ ਰੂਪਾਂਤ੍ਰਨਾਂ ਦੇ ਜਨਰੇਟਰ ਦੇ ਤੌਰ ਤੇ ਕ੍ਰਿਆ ਕਰਨ ਵਾਲੇ ਹੈਮਿਲਟੋਨੀਅਨ ਓਪਰੇਟਰ ਨਾਲ ਅਵਸਥਾਵਾਂ ਉਤਪੰਨ ਹੁੰਦੀਆਂ ਹਨ।[24] ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਸਮੇਂ ਨੂੰ ਇੱਕ ਗਤੀਸ਼ੀਲ ਅਸਥਿਰਾਂਕ ਦੇ ਤੌਰ ਤੇ ਵਰਤਦੀ ਹੈ ਜੋ ਪਦਾਰਥ ਨਾਲ ਸਿੱਧਾ ਹੀ ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਰਦਾ ਹੈ ਅਤੇ ਹੋਰ ਤਾਂ ਹੋਰ,[25] ਅਤੇ ਕੁਆਂਟਮ ਥਿਊਰੀ ਅੰਦਰਲੀਆਂ ਸਮੇਂ ਨਾਲ ਮਿਲਦੀ ਜੁਲਦੀ ਸਮੇਂ ਦੀ ਇੱਕ ਧਾਰਨਾ ਨੂੰ ਨਿਯੁਕਤ ਕਰਨ ਦੀ ਕਿਸੇ ਵੀ ਸੰਭਾਵਨਾ ਨੂੰ ਮੁਕਾਉਂਦਾ ਹੋਇਆ ਮੁੱਕਣ ਲਈ, ਹੈਮਿਲਟੋਨੀਅਨ ਹੱਦਬੰਦੀ ਮੰਗਦਾ ਹੈ।
ਉਮੀਦਵਾਰ ਥਿਊਰੀਆਂ
ਬਹੁਤ ਸਾਰੀਆਂ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਥਿਊਰੀਆਂ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤੀਆਂ ਗਈਆਂ ਹਨ।[26] ਵਰਤਮਾਨ ਤੌਰ ਤੇ, ਅਜੇ ਵੀ ਗਰੈਵਿਟੀ ਦੀ ਕੋਈ ਸੰਪੂਰਨ ਅਤੇ ਅਨੁਕੂਲ ਕੁਆਂਟਮ ਥਿਊਰੀ ਨਹੀਂ ਹੈ, ਅਤੇ ਉਮੀਦਵਾਰ ਮਾਡਲਾਂ ਨੂੰ ਅਜੇ ਪ੍ਰਮੁੱਖ ਰਸਮੀ ਅਤੇ ਧਾਰਨਾਤਮਿਕ ਸਮੱਸਿਆਵਾਂ ਨਿਜੱਠਣ ਦੀ ਲੋੜ ਹੈ। ਮਾਡਲ ਇਹ ਸਾਂਝੀ ਸਮੱਸਿਆ ਦਾ ਸਾਹਮਣਾ ਵੀ ਕਰਦੇ ਹਨ ਕਿ, ਜਿਵੇਂ ਅਜੇ ਤੱਕ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਅਨੁਮਾਨਾਂ ਨੂੰ ਪ੍ਰਯੋਗਿਕ ਪਰਖਾਂ ਵਿੱਚ ਰੱਖਣ ਦਾ ਕੋਈ ਤਰੀਕਾ ਨਹੀਂ ਹੈ, ਭਾਵੇਂ ਇਸ ਦੀ ਤਬਦੀਲੀ ਹੋਣ ਦੀ ਉਮੀਦ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਜਿਵੇਂ ਹੀ ਬ੍ਰਹਿਮੰਡੀ ਨਿਰੀਖਣਾਂ ਤੋਂ ਅਤੇ ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ ਪ੍ਰਯੋਗਾਂ ਤੋਂ ਭਵਿੱਖ ਦੇ ਆਂਕੜੇ ਉਪਲਬਧ ਹੋ ਜਾਂਦੇ ਹਨ। [27][28]
ਸਟਰਿੰਗ ਥਿਊਰੀ
ਇੱਕ ਸੁਝਾਇਆ ਗਿਆ ਸ਼ੁਰੂਆਤੀ ਬਿੰਦੂ ਸਧਾਰਨ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀਆਂ ਹੈ ਜੋ, ਆਖਿਰ ਨੂੰ, ਬੁਨਿਆਦੀ ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੇ ਸਟੈਂਡਰਡ ਮਾਡਲ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਹੋਰ ਤਿੰਨ ਮੁਢਲੇ ਬੁਨਿਆਦੀ ਫੋਰਸਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਿੱਚ ਸਫਲ ਰਹੀਆਂ ਹਨ। ਫੇਰ ਵੀ, ਜਦੋਂਕਿ ਇਹ ਘੱਟ ਊਰਜਾਵਾਂ ਉੱਤੇ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਸਵੀਕਾਰ-ਕਰਨਯੋਗ ਪ੍ਰਭਾਵੀ (ਕੁਆਂਟਮ) ਫੀਲਡ ਥਿਊਰੀ ਵੱਲ ਜਾਣ ਲਈ ਪ੍ਰੇਰਣਾ ਦਿੰਦਾ ਹੈ,[29] ਤਾਂ ਗਰੈਵਿਟੀ ਉੱਚ ਊਰਜਾਵਾਂ ਉੱਤੇ ਹੋਰ ਵੀ ਜਿਆਦਾ ਸਮੱਸਿਆਦਾਇਕ ਸਾਬਤ ਹੁੰਦੀ ਹੈ। ਕੁਆਂਟਮ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਵਰਗੀਆਂ ਸਧਾਰਨ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀਆਂ ਲਈ, ਰੀਨੌਰਮਲਾਇਜ਼ੇਸ਼ਨ ਨਾਮਕ ਇੱਕ ਤਕਨੀਕ ਅਨੁਮਾਨ ਵਿਓਂਤਬੰਦ ਕਰਨ ਦਾ ਇੱਕ ਪ੍ਰਮੁੱਖ ਹਿੱਸਾ ਹੈ ਜੋ ਉੱਚ-ਊਰਜਾ ਯੋਗਦਾਨਾਂ ਲਈ ਜਿਮੇਵਾਰ ਹਨ,[30] ਪਰ ਗਰੈਵਿਟੀ ਗੈਰ-ਪੁਨਰ-ਮਾਨਕੀ-ਕਰਨਯੋਗ ਸਾਬਤ ਹੁੰਦੀ ਆਈ ਹੈ: ਉੱਚ-ਊਰਜਾਵਾਂ ਉੱਤੇ, ਸਧਾਰਨ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਨੁਸਖੇ ਲਾਗੂ ਕਰਨ ਤੇ, ਅਜਿਹੇ ਮਾਡਲ ਪੈਦਾ ਹੁੰਦੇ ਹਨ ਜੋ ਸਾਰੀ ਭਵਿੱਖਬਾਣੀ ਤਾਕਤ ਤੋਂ ਖਾਲੀ ਹੁੰਦੇ ਹਨ।[31]
ਇਹਨਾਂ ਕਮੀਆਂ ਨੂੰ ਦੂਰ ਕਰਨ ਦੀ ਇੱਕ ਕੋਸ਼ਿਸ਼ ਸਧਾਰਨ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ, ਜੋ ਕਿਸੇ ਬਿੰਦੂ ਕਣ ਦੀ ਕਲਾਸੀਕਲ ਧਾਰਨਾ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ, ਨੂੰ ਇੱਕ-ਅਯਾਮੀ ਵਧਾਈਆਂ ਹੋਈਆਂ ਵਸਤੂਆਂ ਦੀ ਇੱਕ ਕੁਆਂਟਮ ਥਿਊਰੀ:ਸਟਰਿੰਗ ਥਿਊਰੀ ਨਾਲ ਬਦਲ ਦੇਣਾ ਹੈ।[32] ਵਰਤਮਾਨ ਪ੍ਰਯੋਗਾਂ ਅੰਦਰ ਪਹੁੰਚੀਆਂ ਊਰਜਾਵਾਂ ਉੱਤੇ, ਇਹ ਸਟਰਿੰਗ ਬਿੰਦੂ-ਵਰਗੇ ਕਣਾਂ ਤੋਂ ਗੈਰ-ਨਿਖੇੜਨਯੋਗ ਹੁੰਦੇ ਹਨ, ਪਰ, ਮਹੱਤਵਪੂਰਨ ਤੌਰ ਤੇ, ਇੱਕੋ ਕਿਸਮ ਦੇ ਬੁਨਿਆਦੀ ਸਟਰਿੰਗ ਅਤੇ ਇੱਕ ਸਟਰਿੰਗ ਦੇ ਔਸੀਲੇਸ਼ਨ ਦੇ ਵੱਖਰੇ ਮੋਡ ਵੱਖਰੇ (ਇਲੈਕਟ੍ਰਿਕ ਅਤੇ ਹੋਰ) ਚਾਰਜਾਂ ਵਾਲੇ ਕਣਾਂ ਦੇ ਤੌਰ ਤੇ ਦਿਸਦੇ ਹਨ। ਇਸ ਤਰੀਕੇ ਨਾਲ, ਸਟਰਿੰਗ ਥਿਊਰੀ ਸਾਰੇ ਕਣਾਂ ਅਤੇ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੇ ਇੱਕ ਯੂਨੀਫਾਈਡ ਵੇਰਵੇ ਦੀ ਥਿਊਰੀ ਹੋਣ ਦਾ ਵਾਅਦਾ ਕਰਦੀ ਹੈ।[33] ਓਸ ਇੱਕ ਮੋਡ ਅੰਦਰ ਸਫਲ ਥਿਊਰੀ ਹਮੇਸ਼ਾਂ ਹੀ ਇੱਕ ਗਰੈਵੀਟੋਨ ਨਾਲ ਸਬੰਧਤ ਰੱਖੇਗੀ, ਜੋ ਗਰੈਵਿਟੀ ਦਾ ਸੰਦੇਸ਼ਵਾਹਕ ਕਣ ਹੈ; ਫੇਰ ਵੀ, ਸਪੇਸ ਦੀਆਂ ਛੇ ਫਾਲਤੂ ਡਾਇਮੈਨਸ਼ਨਾਂ ਵਰਗੇ ਅਸਧਾਰਨ ਲੱਛਣ ਇਸ ਸਫਲਤਾ ਦੀ ਕੀਮਤ ਹਨ, ਜੋ ਸਪੇਸ ਲਈ ਆਮ ਤਿੰਨ ਅਯਾਮਾਂ ਅਤੇ ਟਾਈਮ ਲਈ ਇੱਕ ਅਯਾਮ ਤੋਂ ਫਾਲਤੂ ਹਨ।[34] ਜਿਸ ਨੂੰ ਦੂਜਾ ਸੁਪਰਸਟ੍ਰਿੰਗ ਇੰਨਕਲਾਬ ਕਿਹਾ ਜਾਂਦਾ ਜਾਂਦਾ ਹੈ, ਉਸ ਵਿੱਚ, ਇਹ ਅਨੁਮਾਨਿਤ ਕੀਤਾ ਗਿਆ ਸੀ ਕਿ ਸਟਰਿੰਗ ਥਿਊਰੀ ਅਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਸੁਪਰਸਮਿੱਟਰੀ ਦੀ ਇੱਕ ਯੁਨੀਫਿਕੇਸ਼ਨ ਦੋਵੇਂ ਹੀ, ਜਿਹਨਾਂ ਨੂੰ ਸੁਪਰ-ਗਰੈਵਿਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ[35] M-ਥਿਊਰੀ ਨਾਮਕ ਇੱਕ ਪਰਿਕਲਪਿਤ ਗਿਆਰਾਂ-ਡਾਇਮੈਨਸ਼ਨਲ ਮਾਡਲ ਦਾ ਇੱਕ ਹਿੱਸਾ ਰਚਦੇ ਹਨ, ਜੋ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੀ ਇੱਕ ਨਿਰਾਲੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਅਤੇ ਅਨੁਕੂਲ ਥਿਊਰੀ ਰਚ ਸਕਦੇ ਹਨ।[36][37] ਜਿਵੇਂ ਵਰਤਮਾਨ ਤੌਰ ਤੇ ਸਮਝਿਆ ਗਿਆ ਹੈ, ਫੇਰ ਵੀ, ਸਟਰਿੰਗ ਥਿਊਰੀ ਸਟਰਿੰਗ ਲੈਂਡਸਕੇਪ ਕਹੇ ਜਾਂਦੇ ਖਾਲੀਪਣ ਤੋਂ ਬਣੇ ਅਨੁਕੂਲ ਖਾਲੀਪਣ ਦੀ ਇੱਕ ਬਹੁਤ ਵਿਸ਼ਾਲ ਸੰਖਿਆ (ਕੁੱਝ ਅਨੁਮਾਨਾਂ ਰਾਹੀਂ 10500) ਨੂੰ ਮੰਨਦੀ ਹੈ। ਹੱਲਾੰ ਦੇ ਇਸ ਵਿਸ਼ਾਲ ਪਰਿਵਾਰ ਰਾਹੀਂ ਕਿਸਮਬੱਧ ਕਰਨਾ ਇੱਕ ਪ੍ਰਮੁੱਖ ਚੁਨੌਤੀ ਰਹੀ ਹੈ।
ਲੂਪ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ
ਲੂਪ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਗੰਭੀਰ ਤੌਰ ਤੇ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਸਮਝ ਨੂੰ ਵਿਚਾਰਦੀ ਹੈ ਕਿ ਸਪੇਸਟਾਈਮ ਇੱਕ ਡਾਇਨਾਮਿਕਲ ਫੀਲਡ ਹੈ ਅਤੇ ਇਸਲਈ ਇੱਕ ਕੁਆਂਟਮ ਪ੍ਰਭਾਵ ਹੈ। ਇਸਦਾ ਦੂਜਾ ਵਿਚਾਰ ਇਹ ਹੈ ਕਿ ਕੁਆਂਟਮ ਅਨਿਰੰਤ੍ਰਤਾ ਜੋ ਹੋਰ ਫੀਲਡ ਥਿਊਰੀਆਂ (ਜਿਵੇਂ, ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਦੇ ਫੋਟੌਨ) ਦਾ ਕਣ ਵਰਗਾ ਵਰਤਾਓ ਨਿਰਧਾਰਿਤ ਕਰਦੀ ਹੈ, ਸਪੇਸ ਦੀ ਬਣਤਰ ਤੇ ਵੀ ਅਸਰ ਪਾਉਂਦੀ ਹੈ।
ਲੂਪ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦਾ ਮੁੱਖ ਨਤੀਜਾ ਪਲੈਂਕ ਲੰਬਾਈ ਉੱਤੇ ਸਪੇਸ ਦੀ ਕਿਸੇ ਦਾਣੇਦਾਰ ਬਣਤਰ ਦੀ ਵਿਓਂਤਬੰਦੀ ਹੈ। ਇਸਨੂੰ ਅੱਗੇ ਲਿਖੀਆਂ ਮਾਨਤਾਵਾਂ ਤੋਂ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਜਾਂਦਾ ਹੈ: ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਦੇ ਮਾਮਲੇ ਵਿੱਚ, ਫੀਲਡ ਦੀ ਹਰੇਕ ਫ੍ਰੀਕੁਐਂਸੀ ਦੀ ਊਰਜਾ ਪੇਸ਼ ਕਰਨ ਵਾਲੇ ਕੁਆਂਟਮ ਓਪਰੇਟਰ ਇੱਕ ਡਿਸਕ੍ਰੀਟ (ਅਨਿਰੰਤਰ) ਸਪੈਕਟ੍ਰਮ ਰੱਖਦੇ ਹਨ। ਇਸਤਰਾਂ ਹਰੇਕ ਫ੍ਰੀਕੁਐਂਸੀ ਦੀ ਊਰਜਾ ਕੁਆਂਟਾਇਜ਼ ਹੋ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਇਹੀ ਕੁਆਂਟਾ ਫੋਟੌਨ ਹੁੰਦੇ ਹਨ। ਗਰੈਵਿਟੀ ਦੇ ਮਾਮਲੇ ਵਿੱਚ, ਹਰੇਕ ਸਤਹਿ ਜਾਂ ਸਪੇਸ ਖੇਤਰ ਦੇ ਵੌਲੀਊਮ ਅਤੇ ਖੇਤਰਫਲ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਨ ਵਾਲੇ ਓਪਰੇਟਰ ਵੀ ਅਨਿਰੰਤਰ ਸਪੈਕਟ੍ਰਮ ਰੱਖਦੇ ਹਨ। ਇਸਤਰਾਂ ਸਪੇਸ ਦੇ ਕਿਸੇ ਵੀ ਹਿੱਸੇ ਦਾ ਖੇਤਰਫਲ ਅਤੇ ਘਣਫਲ ਵੀ ਕੁਆਂਟਾਇਜ਼ ਹੋ ਜਾਂਦੇ ਹਨ, ਜਿੱਥੇ ਕੁਆਂਟਾ, ਸਪੇਸ ਦੇ ਮੁਢਲੇ ਕੁਆਂਟਾ ਹੁੰਦੇ ਹਨ। ਫੇਰ, ਇਸ ਤੋਂ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ, ਸਪੇਸਟਾਈਮ, ਪਲੇਂਕ ਸਕੇਲ ਉੱਤੇ, ਇੱਕ ਮੁਢਲੀ ਕੁਆਂਟਮ ਦਾਣੇਦਾਰ ਬਣਤਰ ਰੱਖਦਾ ਹੈ, ਜੋ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦੇ ਅਲਟ੍ਰਾਵਾਇਲਟ ਅਨੰਤਾਂ ਨੂੰ ਕੱਟ ਦਿੰਦੀ ਹੈ।
ਸਪੇਸਟਾਈਮ ਦੀ ਕੁਆਂਟਮ ਅਵਸਥਾ ਨੂੰ ਸਪਿੱਨ ਨੈਟਵਰਕ ਨਾਮਕ ਕਿਸੇ ਗਣਿਤਿਕ ਬਣਤਰ ਦੀ ਭਾਸ਼ਾ ਰਾਹੀਂ ਥਿਊਰੀ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਸਪਿੱਨ ਨੈਟਵਰਕ ਸ਼ੁਰੂਆਤੀ ਤੌਰ ਤੇ ਰੋਜਰ ਪੈੱਨਰੋਜ਼ ਦੁਆਰਾ ਅਮੂਰਤ ਰੂਪ ਵਿੱਚ ਪੇਸ਼ ਕੀਤੇ ਗਏ ਸਨ।, ਅਤੇ ਬਾਦ ਵਿੱਚ ਕਾਰਲੋ ਰੋਵੇੱਲੀ ਅਤੇ ਲੀ ਸਮਿਲਿਨ ਦੁਆਰਾ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਕਿਸੇ ਗੈਰ-ਪਰਚਰਬੇਟਿਵ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ ਤੋਂ ਕੁਦਰਤੀ ਤੌਰ ਤੇ ਵਿਓਂਤਬੰਦ ਕਰਨ ਲਈ ਦਿਖਾਏ ਗਏ ਸਨ। ਸਪਿੱਨ ਨੈਟਵਰਕ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਕਿਸੇ ਫੀਲਡ ਦੀਆਂ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਪ੍ਰਸਤੁਤ ਨਹੀਂ ਕਰਦੇ: ਇਹ ਸਪੇਸਟਾਈਮ ਦੀਆਂ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਨੂੰ ਸਿੱਧੇ ਤੌਰ ਤੇ ਹੀ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ।
ਥਿਊਰੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਪੁਨਰ-ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਉੱਤੇ ਅਧਾਰਿਤ ਹੈ ਜਿਸਨੂੰ ਅਸ਼ਟੇਕਰ ਵੇਰੀਏਬਲ ਦੇ ਤੌਰ ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਇਲੈਕਟ੍ਰਿਕ ਅਤੇ ਚੁੰਬਕੀ ਫੀਲਡਾਂ ਦੇ ਗਣਿਤਿਕ ਤੁੱਲਾਂ ਨੂੰ ਵਰਤਦੇ ਹੋਏ ਰੇਖਾਗਣਿਤਿਕ ਗਰੈਵਿਟੀ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ।[38][39]
ਕੁਆਂਟਮ ਥਿਊਰੀ ਅੰਦਰ, ਸਪੇਸ ਨੂੰ ਅਨਿਰੰਤਰ ਸਟੈੱਪਾਂ ਵਿੱਚ ਵਕਤ ਵਿੱਚ ਉਤਪੰਨ ਹੋ ਰਹੇ ਕਿਸੇ ਸਪਿੱਨ ਨੈਟਵਰਕ ਨਾਮਕ ਇੱਕ ਨੈਟਵਰਕ ਬਣਤਰ ਦੁਆਰਾ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।[40][41][42][43]
ਥਿਊਰੀ ਦਾ ਡਾਇਨਾਮਿਕਸ ਅਜੱਕੱਲ ਕਈ ਵਰਜ਼ਨਾਂ ਵਿੱਚ ਰਚਿਆ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਵਰਜ਼ਨ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਕਾਨੋਨੀਕਲ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ ਨਾਲ ਸ਼ੁਰੂ ਹੁੰਦਾ ਹੈ। ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਦੀ ਤੁੱਲ ਇੱਕ ਵੀਲਰ-ਡਿਵਿੱਟ ਇਕੁਏਸ਼ਨ ਹੈ, ਜੋ ਥਿਊਰੀ ਅੰਦਰ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।[44]
ਕੋਵੇਰੀਅੰਟ ਵਿੱਚ, ਜਾਂ ਥਿਊਰੀ ਦੀ ਸਪਿਨਫੋਮ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਵਿੱਚ, ਕੁਆਂਟਮ ਡਾਇਨਾਮਿਕਸ ਨੂੰ ਸਪਿੱਨਫੋਮਾਂ ਨਾਮਕ, ਸਪੇਸਟਾਈਮ ਦੇ ਅਨਿਰੰਤਰ ਵਰਜ਼ਨਾਂ ਉੱਪਰ ਇੱਕ ਜੋੜ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਸਪਿੱਨ ਨੈਟਵਰਕਾਂ ਦੇ ਇਤਿਾਹਾਸਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ।
ਹੋਰ ਦ੍ਰਿਸ਼ਟੀਕੋਣ
ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਪ੍ਰਤਿ ਹੋਰ ਬਹੁਤ ਸਾਰੇ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਹਨ। ਇਹ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ ਅੰਤਰ ਰੱਖਦੇ ਹਨ ਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਕੁਆਂਟਮ ਥਿਊਰੀ ਦੇ ਕਿਹੜੇ ਲੱਛਣ ਬਦਲਦੇ ਨਹੀਂ ਹਨ, ਅਤੇ ਕਿਹੜੇ ਲੱਛਣ ਸੁਧਾਰੇ ਜਾਂਦੇ ਹਨ।[45][46] ਉਦਾਹਰਨਾਂ ਵਿੱਚ ਇਹ ਸ਼ਾਮਿਲ ਹੈ:
- ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਅੰਦਰ ਅਸਿੰਪਟੋਟਿਕ ਸੁਰੱਖਿਅਤਾ
- ਯੁਕਲਿਡੀਅਨ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ
- ਕਾਰਣਾਤਮਿਕ ਡਾਇਨਾਮਿਕ ਟ੍ਰਾਇੰਗੁਲੇਸ਼ਨ[47]
- ਕੋਵੇਰੀਅੰਟ ਫਾਇਨਮਨ ਪਾਥ ਇੰਟਗ੍ਰਲ ਦ੍ਰਿਸ਼ਟੀਕੋਣ
- ਗਰੁੱਪ ਫੀਲਡ ਥਿਊਰੀ[55]
- ਵੀਲਰ-ਡਿਵਿੱਟ ਇਕੁਏਸ਼ਨ
- ਜੀਓਮੈਟ੍ਰੋਡਾਇਨਾਮਿਕਸ
- ਹੋਰਾਵਾ-ਲਿਫਸ਼ਿਟਜ਼ ਗਰੈਵਿਟੀ
- ਮੈਕਡੋਵੈੱਲ-ਮਾਨਸਾਓਰੀ ਐਕਸ਼ਨ
- ਕੁਆਂਟਮ ਕੌਸਮੌਲੌਜੀ ਦੇ ਮਾਡਲਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਪਾਥ-ਇੰਟਗ੍ਰਲ[56]
- ਰੇੱਗੇ ਕੈਲਕੁਲਸ
- ਸਕੇਲ ਰਿਲੇਟੀਵਿਟੀ
- ਸ਼ੇਪ ਡਾਇਨਾਮਿਕਸ
- ਵਿਰਲਹੀਣ ਉਤੇਜਨਾਵਾਂ ਤੋਂ ਬਗੈਰ ਵਾਲੀਆਂ ਵਿਰਲਹੀਣ ਹੈਲੀਸਿਟੀ ±2 ਉਤੇਜਨਾਵਾਂ ਨੂੰ ਪੈਦਾ ਕਰਦੇ ਸਟਰਿੰਗ-ਨੈਟ[57]
- ਸੁਪਰਫਲੱਡ ਵੈਕੱਮ ਥਿਊਰੀ ਜਿਸਨੂੰ BEC ਵੈਕੱਮ ਦੀ ਇੱਕ ਥਿਊਰੀ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
- ਸੁਪਰ-ਗਰੈਵਿਟੀ
- ਟਵਿਸਟਰ ਥਿਊਰੀ[58]
- ਕਾਨੋਨੀਕਲ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ
- E8 ਥਿਊਰੀ
- ਕੁਆਂਟਮ ਹੋਲੋਨੋਮੀ ਥਿਊਰੀ[59]
ਵੇਨਬਰਗ-ਵਿੱਟਨ ਥਿਊਰਮ
ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਅੰਦਰ, ਵੇਨਬਰਗ-ਵਿੱਟਨ ਥਿਊਰਮ, ਸੰਯੁਕਤ ਗਰੈਵਿਟੀ ਦੀਆਂ ਥਿਊਰੀਆਂ ਉੱਤੇ ਕੁੱਝ ਪਾਬੰਧੀਆਂ ਰੱਖਦੀ ਹੈ। ਫੇਰ ਵੀ, ਤਾਜ਼ਾ ਵਿਕਾਸ ਇਹ ਦਿਖਾਉਣ ਦਾ ਯਤਨ ਕਰਦੇ ਹਨ ਕਿ ਜੇਕਰ ਸਥਾਨਿਕਤਾ ਹੀ ਇਕਲੌਤੀ ਸੰਖੇਪਤਾ ਹੈ ਅਤੇ ਹੋਲੋਗ੍ਰਾਫਿਕ ਪ੍ਰਿੰਸੀਪਲ ਸਹੀ ਹੈ, ਤਾਂ ਵੇਨਬਰਗ-ਵਿੱਟਨ ਥਿਊਰਮ ਪ੍ਰਮਾਣਿਕ ਨਹੀਂ ਹੋ ਸਕੇਗੀ।[ਹਵਾਲਾ ਲੋੜੀਂਦਾ].
ਪ੍ਰਯੋਗਿਕ ਪਰਖਾਂ
ਜਿਵੇਂ ਉੱਪਰ ਜੋਰ ਦਿੱਤਾ ਗਿਆ ਹੈ, ਕੁਆਂਟਮ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪ੍ਰਭਾਵ ਅਤਿ ਕਮਜੋਰ ਹੁੰਦੇ ਹਨ ਅਤੇ ਇਸੇ ਕਰਕੇ ਪਰਖਣੇ ਕਠਿਨ ਹੁੰਦੇ ਹਨ। ਇਸ ਕਾਰਣ ਕਰਕੇ, ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਨੂੰ ਪ੍ਰਯੋਗਿਕ ਤੌਰ ਤੇ ਪਰਖਣ ਦੀ ਸੰਭਾਵਨਾ ਲੇਟ 1990ਵੇਂ ਦਹਾਕਿਆਂ ਤੋਂ ਪਹਿਲਾਂ ਜਿਆਦਾ ਧਿਆਨ ਨਹੀਂ ਪ੍ਰਾਪਤ ਕਰ ਸਕੀ ਸੀ। ਫੇਰ ਵੀ, ਪਿਛਲੇ ਦਹਾਕੇ ਵਿੱਚ, ਭੌਤਿਕ ਵਿਗਿਆਨੀਆਂ ਨੇ ਮਹਿਸੂਸ ਕੀਤਾ ਹੈ ਕਿ ਕੁਆਂਟਮ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪ੍ਰਭਾਵਾਂ ਲਈ ਸਬੂਤ ਥਿਊਰੀ ਦੇ ਵਿਕਾਸ ਲਈ ਮਾਰਗ ਦਰਸ਼ਕ ਹੋ ਸਕਦੇ ਹਨ। ਕਿਉਂਕਿ ਸਿਧਾਂਤਿਕ ਵਿਕਾਸ ਧੀਮਾ ਰਿਹਾ ਹੈ, ਇਸਲਈ ਫੀਨੋਮੀਨੌਲੌਜੀਕਲ ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦੇ ਖੇਤਰ, ਜੋ ਪ੍ਰਯੋਗਿਕ ਪਰਖਾਂ ਦੀ ਸੰਭਾਵਨਾ ਦਾ ਅਧਿਐਨ ਕਰਦਾ ਹੈ, ਨੇ, ਵਧਿਆ ਹੋਇਆ ਧਿਆਨ ਪ੍ਰਾਪਤ ਕੀਤਾ ਹੈ।[60][61]
ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਫੀਨੋਮੀਨੌਲੌਜੀ ਵਾਸਤੇ ਸਭ ਤੋਂ ਜਿਆਦਾ ਅਪਣਾਈਆਂ ਗਈਆਂ ਸੰਭਾਵਨਾਵਾਂ ਵਿੱਚ ਲੌਰੰਟਜ਼ ਇਨਵੇਰੀਅੰਸ ਦੀਆਂ ਉਲੰਘਣਾਵਾਂ ਸ਼ਾਮਿਲ ਹਨ, ਜੋ ਕੌਸਮਿਕ ਮਾਈਕ੍ਰੋਵੇਵ ਬੈਕਗ੍ਰਾਊਂਡ ਅੰਦਰ ਕੁਆਂਟਮ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪ੍ਰਭਾਵਾਂ (ਵਿਸ਼ੇਸ਼ ਤੌਰ ਤੇ ਇਸਦੀ ਪੋਲਰਾਇਜ਼ੇਸ਼ਨ) ਅਤੇ ਸਪੇਸ-ਟਾਈਮ ਫੋਮ ਅੰਦਰਲੇ ਉਤ੍ਰਾਵਾਂ-ਚੜਾਵਾਂ ਰਾਹੀਂ ਥੋਪੀ ਗਈ ਡੀਕੋਹਰੰਸ ਦੇ ਛਾਪੇ ਹੁੰਦੇ ਹਨ।
BICEP2 ਪ੍ਰਯੋਗ ਨੇ ਓਹ ਡਿਟੈਕਟ ਕੀਤਾ ਹੈ ਜਿਸਨੂੰ ਸ਼ੁਰੂ ਵਿੱਚ ਅਰੰਭਿਕ ਬ੍ਰਹਿਮੰਡ ਅੰਦਰਲੀਆਂ ਗਰੈਵੀਟੇਸ਼ਨਲ ਤਰੰਗਾਂ ਸਦਕਾ ਪੈਦਾ ਹੋਈ ਮੁਢਲੀ B-ਮੋਡ ਪੋਲਰਾਇਜ਼ੇਸ਼ਨ ਸਮਝਿਆ ਜਾਂਦਾ ਸੀ। ਜੇਕਰ ਸੱਚਮੁੱਚ ਮੁਢਲੀਆਂ ਹੋਣ, ਤਾਂ ਇਹ ਤਰੰਗਾਂ ਖੁਦ ਗਰੈਵਿਟੀ ਅੰਦਰ ਕੁਆਂਟਮ ਉਤ੍ਰਾਵਾਂ-ਚੜਾਵਾਂ ਦੇ ਤੌਰ ਤੇ ਜਨਮੀਆਂ ਹੋਣਗੀਆਂ । ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨੀ ਕੇਨ ਓਲੁੱਮ (ਟੁਫਟਸ ਯੂਨੀਵਰਸਟੀ) ਬਿਆਨ ਕਰਦਾ ਹੈ: "ਮੈਂ ਸੋਚਦਾ ਹਾਂ ਕਿ ਇਹ ਸਿਰਫ ਨਿਰੀਖਣਾਤਮਿਕ ਸਬੂਤ ਹੀ ਹੈ ਜੋ ਦਿਖਾਉਂਦਾ ਹੈ ਕਿ ਗਰੈਵਿਟੀ ਕੁਆਂਟਾਇਜ਼ ਹੁੰਦੀ ਹੈ....ਇਹ ਸ਼ਾਇਦ ਇਸਦਾ ਇਕਲੌਤਾ ਸਬੂਤ ਹੀ ਹੈ ਜੋ ਸਾਡੇ ਕੋਲ ਕਦੇ ਹੋ ਸਕਦਾ ਸੀ।"[62]
ਸੋਚ ਪ੍ਰਯੋਗ
ਜਿਵੇਂ ਉੱਪਰ ਸਮਝਾਇਆ ਗਿਆ ਹੈ, ਕੁਆਂਟਮ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪ੍ਰਭਾਵ ਬਹੁਤ ਜਿਆਦਾ ਕਮਜੋਰ ਹੁੰਦੇ ਹਨ ਜਿਸ ਕਰਕੇ ਇਹਨਾ ਨੂੰ ਟੈਸਟ ਕਰਨਾ ਅਸਾਨ ਨਹੀਂ ਹੁੰਦਾ । ਇਸੇ ਕਾਰਨ ਕਰਕੇ, ਸੋਚ ਪ੍ਰਯੋਗ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸਿਧਾਂਤਿਕ ਔਜ਼ਾਰ ਬਣਦੇ ਜਾ ਰਹੇ ਹਨ। ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਦਾ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਪਹਿਲੂ ਸਪਿੱਨ ਅਤੇ ਸਪੇਸਟਾਈਮ ਦੀ ਕਪਲਿੰਗ ਦੇ ਸਵਾਲ ਨਾਲ ਸਬੰਧਿਤ ਬਣਦਾ ਹੈ। ਜਦੋਂਕਿ ਸਪਿੱਨ ਅਤੇ ਸਪੇਸਟਾਈਮ ਦੇ ਜੋੜੇ ਜਾਣ ਦੀ ਉਮੀਦ ਹੁੰਦੀ ਹੈ,[63] ਫੇਰ ਵੀ ਇਸ ਕਪਲਿੰਗ ਦੀ ਸ਼ੁੱਧ ਫਿਤਰਤ ਅਜੇ ਅਗਿਆਤ ਹੈ। ਖਾਸ ਕਰ ਕੇ ਅਤੇ ਸਭ ਤੋਂ ਜਿਆਦਾਤਰ ਮਹੱਤਵਪੂਰਨ ਤੌਰ ਤੇ, ਇਹ ਗਿਆਤ ਨਹੀਂ ਹੈ ਕਿ ਕਿਵੇਂ ਕੁਆਂਟਮ ਸਪਿੱਨ ਸੋਮੇ ਗਰੈਵਿਟੀ ਰੱਖਦੇ ਹਨ ਅਤੇ ਕਿਸੇ ਸਿੰਗਲ ਸਪਿੱਨ-ਹਾਫ ਕਣ ਦੀ ਸਪੇਸਟਾਈਮ ਦੇ ਸਹੀ ਲੱਛਣ ਕੀ ਹੁੰਦੇ ਹਨ। ਇਸ ਸਵਾਲ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਵਾਸਤੇ, ਕੁਆਂਟਮ ਸੂਚਨਾ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਸੋਚ ਪ੍ਰਯੋਗ ਸੁਝਾਏ ਗਏ ਹਨ।[64] ਇਹ ਕੰਮ ਦਿਖਾਉਂਦਾ ਹੈ ਕਿ, ਸਾਪੇਖਿਕਤਾ ਕਾਰਣਾਤਮਿਕਤਾ ਦੀ ਉਲੰਘਣਾ ਰੋਕਣ ਵਾਸਤੇ, ਕਿਸੇ ਅੱਧੇ-ਸਪਿੱਨ ਕਣ (ਰੈਸਟ ਫਰੇਮ) ਦੇ ਦੁਆਲੇ ਨਾਪਣਯੋਗ ਸਪੇਸਟਾਈਮ ਦਾ ਗੋਲਾਈ ਦੇ ਤੌਰ ਤੇ ਸਮਰੂਪ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ – ਯਾਨਿ ਕਿ, ਜਾਂ ਤਾਂ ਸਪੇਸਟਾਈਮ ਗੋਲਾਈ ਦੇ ਤੌਰ ਤੇ ਸਮਰੂਪ ਹੁੰਦਾ ਹੈ, ਜਾਂ ਸਪੇਸਟਾਈਮ ਦੇ ਨਾਪ (ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਟਾਈਮ-ਡਿਲੇਸ਼ਨ ਨਾਪ) ਕਿਵੇਂ ਨਾ ਕਿਵੇਂ ਕਿਸੇ ਕਿਸਮ ਦਾ ਉਲਟਾ ਐਕਸ਼ਨ ਪੈਦਾ ਕਰਦੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ ਜੋ ਕੁਆਂਟਮ ਸਪਿੱਨ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੋਵੇ ਅਤੇ ਬਦਲਦਾ ਹੋਵੇ ।
ਇਹ ਵੀ ਦੇਖੋ
- ਅਬ੍ਰਾਹੀਮ-ਲੌਰੰਟਜ਼ ਫੋਰਸ
- ਬਲੈਜ ਹੋਲਾਂ ਤੋਂ ਪਰੇ
- ਬਲੈਕ ਹੋਲ ਇਲੈਕਟ੍ਰੌਨ
- ਸੈਂਟਾਓਰੋ ਘਟਨਾ
- ਡੀ ਸਿੱਟਰ ਰਿਲੇਟੀਵਿਟੀ
- ਦੋਹਰੀ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ
- ਘਟਨਾ ਸਮਰੂਪਤਾ
- ਫੋਕ-ਲੌਰੰਟਜ਼ ਸਮਰੂਪਤਾ
- ਗ੍ਰੈਵਿਟੋ-ਮੈਗਨੈਟਿਜ਼ਮ
- ਹਾਕਿੰਗ ਰੇਡੀਏਸ਼ਨ
- ਇਨਵੇਰੀਅੰਸ ਮਕੈਨਿਕਸ
- ਕੁਆਂਟਮ ਗਰੈਵਿਟੀ ਰਿਸਰਚਰਾਂ ਦੀ ਸੂਚੀ
- ਮੈਕ੍ਰੋਕੌਸਮ ਅਤੇ ਮਾਈਕ੍ਰੋਕੌਸਮ
- ਮੁੱਲ ਦੇ ਦਰਜੇ (ਲੰਬਾਈ)
- ਪੈਨਰੋਜ਼ ਵਿਆਖਿਆ
- ਪਲੇਂਕ ਇਪੋਚ
- ਪਲੈਂਕ ਯੂਨਿਟਾਂ
- ਕੁਆਂਟਮ ਰੀਆਲਮ
- ਸੋਕਲ ਅਫੇਅਰ
- ਕਮਜੋਰ ਗਰੈਵਿਟੀ ਕੰਜਕਚਰ
ਹਵਾਲੇ
ਹੋਰ ਲਿਖਤਾਂ
ਬਾਹਰੀ ਲਿੰਕ
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.