From Wikipedia, the free encyclopedia
ਕੁਆਂਟਮ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ, ਕੁਆਂਟਮ ਅਵਸਥਾ ਕਿਸੇ ਆਇਸੋਲੇਟਡ (ਬੰਦ) ਕੁਆਂਟਮ ਸਿਸਟਮ ਦੀ ਅਵਸਥਾ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੀ ਹੈ। ਕੋਈ ਕੁਆਂਟਮ ਅਵਸਥਾ ਹਰੇਕ ਔਬਜ਼ਰਵੇਬਲ ਦੇ ਮੁੱਲ ਲਈ ਇੱਕ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਵਿਸਥਾਰ-ਵੰਡ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦੀ ਹੈ, ਯਾਨਿ ਕਿ, ਸਿਸਟਮ ਉੱਤੇ ਹਰੇਕ ਸੰਭਵ ਨਾਪ ਦੇ ਨਤੀਜੇ ਵਾਸਤੇ ਇੱਕ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਵਿਸਥਾਰ-ਵੰਡ ਮੁਹੱਈਆ ਕਰਵਾਉਂਦੀ ਹੈ। ਵਕਤ ਵਿੱਚ ਸਿਸਟਮ ਦੀ ਉਤਪਤੀ ਲਈ ਨਿਯਮਾਂ ਸਮੇਤ ਕੁਆਂਟਮ ਅਵਸਥਾ ਦੀ ਜਾਣਕਾਰੀ ਇੱਕਠੇ ਰੂਪ ਵਿੱਚ ਉਹ ਸਾਰਾ ਕੁੱਝ ਦੱਸ ਸਕਦੀ ਹੈ ਜੋ ਸਿਸਟਮ ਦੇ ਵਰਤਾਓ ਬਾਰੇ ਅਨੁਮਾਨਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਦਾ ਇੱਕ ਮਿਸ਼ਰਣ ਫੇਰ ਤੋਂ ਇੱਕ ਕੁਆਂਟਮ ਅਵਸਥਾ ਹੀ ਹੁੰਦਾ ਹੈ। ਜਿਹੜੀਆਂ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਨੂੰ ਹੋਰ ਅਵਸਥਾਵਾਂ ਦੇ ਮਿਸ਼ਰਣ ਦੇ ਰੂਪ ਵਿੱਚ ਨਹੀਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ, ਉਹਨਾਂ ਨੂੰ ਸ਼ੁੱਧ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਬਾਕੀ ਸਭ ਨੂੰ ਮਿਸ਼ਰਤ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
ਗਣਿਤਿਕ ਤੌਰ ਤੇ, ਕੋਈ ਸ਼ੁੱਧ ਕੁਆਂਟਮ ਅਵਸਥਾ ਕੰਪਲੈਕਸ ਨੰਬਰਾਂ ਉੱਪਰ ਇੱਕ ਹਿਲਬਰਟ ਸਪੇਸ ਅੰਦਰ ਕਿਸੇ ਕਿਰਣ ਦੁਆਰਾ ਪ੍ਰਸਤੁਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ।[1] ਕਿਰਣ ਅਜਿਹੇ ਗੈਰ-ਜ਼ੀਰੋ ਵੈਕਟਰ ਦਾ ਇੱਕ ਸੈੱਟ ਹੁੰਦੀ ਹੈ ਜੋ ਸਿਰਫ ਇੱਕ ਕੰਪਲੈਕਸ ਸਕੇਲਰ ਫੈਕਟਰ (ਹਿੱਸੇ) ਰਾਹੀਂ ਫਰਕ ਰੱਖਦੇ ਹਨ; ਉਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਵੀ ਕਿਰਣ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਨ ਲਈ ਇੱਕ ਅਵਸਥਾ ਵੈਕਟਰ ਦੇ ਰੂਪ ਵਿੱਚ ਚੁਣਿਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਇਸ ਤਰ੍ਹਾਂ ਅਵਸਥਾ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ। ਇੱਕ ਯੂਨਿਟ ਵੈਕਟਰ ਆਮਤੌਰ ਤੇ ਚੁੱਕ ਲਿਆ ਜਾਂਦਾ ਹੈ, ਪਰ ਇਸਦਾ ਫੇਜ਼ ਫੈਕਟਰ ਕਿਸੇ ਵੀ ਤਰੀਕੇ ਨਾਲ ਸੁਤੰਤਰਤਾ ਨਾਲ ਚੁਣ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਹੋਰ ਤਾਂ ਹੋਰ, ਅਜਿਹੇ ਫੈਕਟਰ (ਹਿੱਸੇ) ਉਦੋਂ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦੇ ਹਨ ਜਦੋਂ ਅਵਸਥਾ ਵੈਕਟਰਾਂ ਨੂੰ ਇੱਕ ਸੁਪਰਪੁਜੀਸ਼ਨ ਰਚਣ ਵਾਸਤੇ ਇਕੱਠਿਆਂ ਜੋੜਿਆ ਜਾਂਦਾ ਹੈ।
ਹਿਲਬਰਟ ਸਪੇਸ ਸਧਰਾਨ ਯੁਕਿਲਡਨ ਸਪੇਸ ਦਾ ਇੱਕ ਸਰਵ-ਸਧਾਰੀਕਰਨ ਹੈ[2]: 93–96 ਅਤੇ ਇਹ ਦਿੱਤੇ ਹੋਏ ਸਿਸਟਮ ਦੀਆਂ ਸਾਰੀਆਂ ਸੰਭਵ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਰੱਖਦੀ ਹੈ। ਜੇਕਰ ਇਹ ਹਿਲਬਰਟ ਸਪੇਸ, ਪ੍ਰਸਤੁਤੀ ਦੀ ਪਸੰਦ (ਜਰੂਰ ਹੀ ਔਬਜ਼ਰਵੇਬਲਾਂ ਦੇ ਇੱਕ ਸੰਪੂਰਣ ਸੈੱਟ ਨਾਲ ਸਬੰਧਤ ਅਧਾਰ ਦੀ ਪਸੰਦ) ਰਾਹੀਂ ਕਿਸੇ ਫੰਕਸ਼ਨ ਸਪੇਸ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕੀਤੀ ਜਾਵੇ, ਜੋ ਆਪਣੇ ਆਪ ਵਿੱਚ ਇੱਕ ਹਿਲਬਰਟ ਸਪੇਸ ਹੁੰਦੀ ਹੈ, ਫੇਰ ਪ੍ਰਸਤੁਤਕਰਤਾਵਾਂ ਨੂੰ ਵੇਵ ਫੰਕਸ਼ਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਹਾਈਡ੍ਰੋਜਨ ਐਟਮ ਅੰਦਰ ਇਲੈਕਟ੍ਰੌਨ ਦੇ ਐਨਰਜੀ ਸਪੈਕਟ੍ਰਮ ਨਾਲ ਨਿਬਟਦੇ ਵਕਤ, ਮਿਲਦੇ ਜੁਲਦੇ ਅਵਸਥਾ ਵੈਕਟਰਾਂ ਦੀ ਪਛਾਣ ਪ੍ਰਿੰਸੀਪਲ ਕੁਆਂਟਮ ਨੰਬਰ n, ਐਂਗੁਲਰ ਮੋਮੈਂਟਮ ਕੁਆਂਟਮ ਨੰਬਰ l, ਮੈਗਨੈਟਿਕ ਕੁਆਂਟਮ ਨੰਬਰ m, ਅਤੇ ਸਪਿੱਨ z-ਕੰਪੋਨੈਂਟ sz ਨਾਲ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇੱਕ ਹੋਰ ਜਿਆਦਾ ਗੁੰਝਲਦਾਰ ਮਾਮਲਾ ਕਿਸੇ ਅਵਸਥਾ ਵੈਕਟਰ ਦੇ ਸਪਿੱਨ ਹਿੱਸੇ ਦੁਆਰਾ (ਬ੍ਰਾ-ਕੈੱਟ ਨੋਟੇਸ਼ਨ ਵਿੱਚ) ਮਿਲਦਾ ਹੈ।
ਜਿਸ ਵਿੱਚ ਸਪਿੱਨ 1⁄2 ਵਾਲ਼ੇ ਦੋ ਕਣਾਂ ਵਾਸਤੇ ਸਾਂਝੀਆਂ ਸਪਿੱਨ ਅਵਸਥਾਵਾਂ ਦੀ ਸੁਪਰਪੁਜੀਸ਼ਨ ਸ਼ਾਮਿਲ ਹੁੰਦਾ ਹੈ।
ਇੱਕ ਮਿਕਸਡ ਕੁਆਂਟਮ ਅਵਸਥਾ ਸ਼ੁੱਧ ਅਵਸਥਾਵਾਂ ਦੇ ਇੱਕ ਪ੍ਰੋਬੇਬਿਲਿਟਾਤਮਿਕ ਮਿਸ਼ਰਣ ਨਾਲ ਸਬੰਧਤ ਹੁੰਦੀ ਹੈ; ਫੇਰ ਵੀ, ਸ਼ੁੱਧ ਅਵਸਥਾਵਾਂ ਦੀਆਂ ਵਿਭਿੰਨ ਵਿਸਥਾਰ-ਵੰਡਾਂ ਸਮਾਨ (ਯਾਨਿ ਕਿ, ਭੌਤਿਕੀ ਤੌਰ ਤੇ ਗੈਰ-ਪਛਾਣਯੋਗ) ਮਿਸ਼ਰਤ ਅਵਸਥਾਵਾਂ ਪੈਦਾ ਕਰ ਸਕਦੀਆਂ ਹਨ। ਮਿਸ਼ਰਤ ਅਵਸਥਾਵਾਂ ਨੂੰ ਡੈੱਨਸਟੀ ਮੈਟ੍ਰਿਕਸਾਂ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਕੋਈ ਸ਼ੁੱਧ ਅਵਸਥਾ ਵੀ ਕਿਸੇ ਡੈੱਨਸਟੀ ਮੈਟ੍ਰਿਕਸ ਦੁਬਾਰਾ ਪੁਨਰ-ਪ੍ਰਦ੍ਰਸ਼ਿਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ; ਇਸ ਤਰੀਕੇ ਨਾਲ, ਸ਼ੁੱਧ ਅਵਸਥਾਵਾਂ ਨੂੰ ਹੋਰ ਜਿਆਦਾ ਸਰਵ ਸਧਾਰਨ ਮਿਸ਼ਰਤ ਅਵਸਥਾਵਾਂ ਦੇ ਇੱਕ ਉੱਪ-ਸਮੂਹ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਜੇਕਰ ਕਿਸੇ ਇਲੈਕਟ੍ਰੌਨ ਦਾ ਸਪਿੱਨ ਕਿਸੇ ਦਿਸ਼ਾ ਵਿੱਚ ਨਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਵੇਂ ਸਟ੍ਰਲਨ-ਗਾਰਲੈਚ ਪ੍ਰਯੋਗ ਨਾਲ, ਦੋ ਸੰਭਵ ਨਤੀਜੇ ਮਿਲਦੇ ਹਨ, ਅੱਪ ਜਾਂ ਡਾਊਨ। ਇਸਲਈ ਇਲੈਕਟ੍ਰੌਨ ਦੇ ਸਪਿੱਨ ਵਾਸਤੇ ਹਿਲਬਰਟ ਸਪੇਸ ਦੋ-ਅਯਾਮੀ ਹੁੰਦੀ ਹੈ। ਇੱਥੇ ਇੱਕ ਸ਼ੁੱਧ ਅਵਸਥਾ ਨੂੰ ਇੱਕ ਦੋ-ਅਯਾਮੀ ਕੰਪਲੈਕਸ ਵੈਕਟਰ ਨਾਲ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜਿਸਦੀ ਲੰਬਾਈ ਇੱਕ ਹੁੰਦੀ ਹੈ; ਯਾਨਿ ਕਿ, ਇਸ ਹੇਠਾਂ ਲਿਖੇ ਕੰਪਲੈਕਸ ਵੈਕਟਰ ਨਾਲ,
ਜਿੱਥੇ ਅਤੇ , ਅਤੇ ਦੇ ਐਬਸੋਲਿਊਟ ਮੁੱਲ ਹੁੰਦੇ ਹਨ। ਇੱਕ ਮਿਸ਼ਰਤ ਅਵਸਥਾ, ਇਸ ਕੇਸ ਵਿੱਚ, ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦੀ ਹੈ ਜੋ ਹਰਮਿਸ਼ਨ, ਪੌਜ਼ਟਿਵ-ਨਿਸ਼ਚਿਤ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਜਿਸਦੀ ਟ੍ਰੇਸ 1 ਹੁੰਦੀ ਹੈ।
ਕਿਸੇ ਕੁਆਂਟਮ ਸਿਸਟਮ ਉੱਤੇ ਕੋਇ ਵਿਸ਼ੇਸ਼ ਨਾਪ ਲੈਣ ਤੋਂ ਪਹਿਲਾਂ, ਥਿਊਰੀ ਆਮਤੌਰ ਤੇ ਸਿਰਫ ਇੱਕ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਵਿਸਥਾਰ-ਵੰਡ ਹੀ ਨਤੀਜੇ ਵਾਸਤੇ ਦਿੰਦੀ ਹੈ, ਅਤੇ ਵਿਸਥਾਰ-ਵੰਡ ਜੋ ਰੂਪ ਲੈ ਲੈਂਦੀ ਹੈ, ਉਹ ਪੂਰੀ ਤਰਾਂ ਕੁਆਂਟਮ ਅਵਸਥਾ ਅਤੇ ਨਾਪ ਦਰਸਾਉਣ ਵਾਲੇ ਔਬਜ਼ਰਵੇਬਲ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਵਿਸਥਾਰ-ਵੰਡਾਂ ਦੋਵਾਂ ਲਈ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ, ਮਿਸ਼ਰਤ ਅਤੇ ਸ਼ੁੱਧ ਅਵਸਥਾਵਾਂ ਲਈ; ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ (ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਤੋਂ ਉਲਟ) ਇੱਕ ਅਜਿਹੀ ਅਵਸਥਾ ਤਿਆਰ ਕਰਨੀ ਅਸੰਭਵ ਹੈ ਜਿਸ ਵਿੱਚ ਸਿਸਟਮ ਦੀਆਂ ਸਭ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਫਿਕਸ ਕੀਤੀਆਂ ਹੋਣ ਅਤੇ ਨਿਸ਼ਚਿਤ ਹੋਣ। ਇਸਦੀ ਮਿਸਾਲ ਅਨਸਰਟਨਟੀ ਪ੍ਰਿੰਸੀਪਲ ਦੁਆਰਾ ਮਿਲਦੀ ਹੈ, ਅਤੇ ਇਹ ਕਲਾਸੀਕਲ ਅਤੇ ਕੁਆਂਟਮ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦਰਮਿਆਨ ਮੂਲ ਫਰਕ ਉਜਾਗਰ ਕਰਦਾ ਹੈ। ਇੱਥੋਂ ਤੱਕ ਕਿ ਕੁਆਂਟਮ ਥਿਊਰੀ ਅੰਦਰ, ਫੇਰ ਵੀ, ਹਰੇਕ ਔਬਜ਼ਰਵੇਬਲ ਵਾਸਤੇ ਕੁੱਝ ਅਵਸਥਾਵਾਂ ਅਜਿਹੀਆਂ ਹੁੰਦੀਆਂ ਹਨ ਜੋ ਓਸ ਔਬਜ਼ਰਵੇਬਲ ਲਈ ਇੱਕ ਇੰਨਬਿੰਨ ਅਤੇ ਨਿਰਧਾਰਤ ਕੀਤਾ ਮੁੱਲ ਰੱਖਦੀਆਂ ਹਨ। .[2]: 4–5 [3]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.