From Wikipedia, the free encyclopedia
Ortogonalitet er i matematikken en egenskap ved vektorer og funksjoner. To vektorer/funksjoner er ortogonale dersom de er uavhengige av hverandre (at den ene vektoren/funksjonen ikke kan benyttes til å beskrive den andre). Dette betyr at vektorene står vinkelrett på hverandre, noe som er enklest å forestille seg i vanlige to- og tre-dimensjonale vektorsystemer.
Kildeløs: Denne artikkelen mangler kildehenvisninger, og opplysningene i den kan dermed være vanskelige å verifisere. Kildeløst materiale kan bli fjernet. Helt uten kilder. (10. okt. 2015) |
Om to vektorer x og y er ortogonale, er indreproduktet mellom dem lik null: . For å uttrykke ortogonalitet matematisk skrives dette som .
At to funksjoner og er ortogonale i intervallet defineres som at indreproduktet mellom dem er lik null:
For eksempel er sinus og cosinus ortogonale i området .
Utvid avsnitt: Dette avsnittet trenger mer innhold. Hjelp gjerne til med å forbedre denne artikkelen ved å legge til pålitelige kilder (en). Materiale uten kilder kan bli fjernet. |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.