Loading AI tools
Van Wikipedia, de vrije encyclopedie
De warmtevergelijking of diffusievergelijking is een elementaire parabolische partiële differentiaalvergelijking die onder andere de variatie van temperatuur in een gegeven gebied in de tijd kan beschrijven.
In drie dimensies heeft de vergelijking de volgende vorm:
waarin:
Voor willekeurige dimensies kan de warmtevergelijking door middel van de Laplace-operator beschreven worden.
Hierin wordt de Laplace-operator genomen over de variabelen die de ruimte beschrijven (in bovenstaand voorbeeld en ).
De variabelen zijn tweede afgeleiden naar (in dit geval) de dimensie :
In dit alles spelen van het materiaal afhankelijke evenredigheidsfactoren een rol; die factoren zijn samengebracht in de warmtediffusiviteit :
Om van de warmtevergelijking een zinvolle wiskundige (en fysische) probleemstelling te maken, moet ze nog aangevuld worden met randvoorwaarden. Dat wil zeggen dat bepaalde aspecten van de onbekende functie a priori worden vastgelegd op de rand van een deelverzameling van de ruimte-tijd. Meestal neemt dit de vorm aan van een afzonderlijke beginvoorwaarde op tijdstip en een ruimtelijke randvoorwaarde op de rand van een deelverzameling van de ruimtelijke coördinaten. In dat geval zoeken we naar functies voor strikt positieve tijdstippen en voor ruimtelijke coördinaten die binnen de gegeven deelverzameling liggen.
Voor de beginvoorwaarde wordt meestal de waarde van zelf vastgelegd voor en voor elke mogelijk punt in de ruimte (of het relevante deel van de ruimte).
Voor de ruimtelijke randvoorwaarde legt men meestal de waarde van zelf vast (probleem van Dirichlet), of haar richtingsafgeleide loodrecht op de rand van de gegeven verzameling (probleem van Neumann), of een combinatie van beide.
De temperatuurverdeling en -evolutie in een dunne geïsoleerde staaf van lengte wordt beschreven door een warmtevergelijking in één tijdelijke en één ruimtelijke coördinaat
De beginvoorwaarde specificeert de temperatuurverdeling op het begintijdstip :
Het thermische isolement van de staaf vertolkt zich in de Neumann-randvoorwaarden
De aanpak bestaat er meestal in, voor de specifieke vorm van de randvoorwaarden een geschikte greense functie te vinden. Bij ruimtelijke dimensie een betekent dit een functie
die als functie van en voldoet aan de warmtevergelijking, maar waarbij de rand- en beginvoorwaarden herleid zijn tot een diracfunctie geconcentreerd in .
De eigenlijke oplossing van het randvoorwaardeprobleem is dan de integraal van deze greense functie, gewogen met de echte begin- en randvoorwaarden als functie van en .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.