Remove ads
Van Wikipedia, de vrije encyclopedie
In de maattheorie, een deelgebied van de wiskunde, is de Smith-Volterra-Cantor-verzameling (SVC) of ook de dikke Cantor-verzameling is een voorbeeld van een verzameling van punten op de reële lijn R die nergens dicht is. Opvallend is dat hoewel de Smith-Volterra-Cantor-verzameling geen intervallen bevat, maar wel een positieve maat heeft. De Smith-Volterra-Cantor-verzameling is genoemd naar de wiskundigen Henry Smith, Vito Volterra en Georg Cantor.
Vergelijkbaar met de constructie van de Cantor-verzameling wordt de Smith-Volterra-Cantor-verzameling geconstrueerd door bepaalde intervallen uit het eenheidsinterval [0, 1] te verwijderen.
Het proces begint met het verwijderen van het middelste kwart (1/4) van het interval [0, 1] (wat op hetzelfde neerkomt als het verwijderen van een achtste (1/8) aan elk van beide zijden van het middelpunt op een half (1/2). Na deze actie is de overblijvende verzameling gelijk aan
De volgende stappen bestaan eruit om steeds de deelintervallen met breedte
resterende intervallen te verwijderen. Bij de tweede stap wordt er dus een interval van een zestiende, bij de derde stap een interval van een vierenzestigste verwijderd. Het aantal intervallen, waar een stuk uit wordt verwijderd, neemt toe van twee, naar vier (3e stap), naar acht (4e stap) enzovoort.
Voor de tweede stap worden dus de intervallen (5/32, 7/32) en (25/32, 27/32) verwijderd, waardoor de onderstaande verzameling overblijft
Wanneer we onbeperkt doorgaan met deze procedure is de Smith-Volterra-Cantor-verzameling de verzameling van punten die nooit worden verwijderd. De afbeelding hieronder toont de initiële verzameling en de eerste vijf iteraties van dit proces:
Door de wijze van construeren bevat de Smith-Volterra-Cantor-verzameling geen intervallen. Gedurende het constructieproces worden intervallen met een totale lengte
verwijderd uit het eenheidsinterval [0, 1], waaruit blijkt dat de verzameling van de overblijvende punten een positieve maat heeft van 1/2.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.